1
|
Schwartz SS, Corkey BE, R Gavin J, DeFronzo RA, Herman ME. Advances and counterpoints in type 2 diabetes. What is ready for translation into real-world practice, ahead of the guidelines. BMC Med 2024; 22:356. [PMID: 39227924 PMCID: PMC11373437 DOI: 10.1186/s12916-024-03518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/08/2024] [Indexed: 09/05/2024] Open
Abstract
This review seeks to address major gaps and delays between our rapidly evolving body of knowledge on type 2 diabetes and its translation into real-world practice. Through updated and improved best practices informed by recent evidence and described herein, we stand to better attain A1c targets, help preserve beta cell integrity and moderate glycemic variability, minimize treatment-emergent hypoglycemia, circumvent prescribing to "treatment failure," and prevent long-term complications. The first topic addressed in this review concerns updates in the 2023 and 2024 diabetes treatment guidelines for which further elaboration can help facilitate integration into routine care. The second concerns advances in diabetes research that have not yet found their way into guidelines, though they are endorsed by strong evidence and are ready for real-world use in appropriate patients. The final theme addresses lingering misconceptions about the underpinnings of type 2 diabetes-fundamental fallacies that continue to be asserted in the textbooks and continuing medical education upon which physicians build their approaches. A corrected and up-to-date understanding of the disease state is essential for practitioners to both conceptually and translationally manage initial onset through late-stage type 2 diabetes.
Collapse
Affiliation(s)
- Stanley S Schwartz
- Main Line Health, Wynnewood, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - James R Gavin
- Emory University School of Medicine, Atlanta, GA, USA
| | - Ralph A DeFronzo
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, South Texas. Veterans Health Care System and Texas Diabetes Institute, 701 S. Zarzamoro, San Antonio, TX, 78207, USA
| | - Mary E Herman
- Social Alchemy: Building Physician Competency Across the Globe, 5 Ave Sur #36, Antigua, Sacatepéquez, Guatemala.
| |
Collapse
|
2
|
Liu L, Zhang BB, Li YZ, Huang WJ, Niu Y, Jia QC, Wang W, Yuan JR, Miao SD, Wang RT, Wang GY. Preoperative glucose-to-lymphocyte ratio predicts survival in cancer. Front Endocrinol (Lausanne) 2024; 15:1284152. [PMID: 38501103 PMCID: PMC10946689 DOI: 10.3389/fendo.2024.1284152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
Background Systemic inflammation and glucose metabolism have been closely related to the survival of cancer patients. Therefore, we aimed to evaluate whether preoperative glucose-to-lymphocyte ratio (GLR) can be used to predict the survival of cancer patients. Methods We retrospectively examined 2172 cancer patients who underwent surgery from January 1, 2014, to December 31, 2016. There were 240 patients with non-small cell lung cancer (NSCLC), 378 patients with colorectal cancer (CRC), 221 patients with breast cancer (BC), 335 patients with gastric cancer (GC), 270 patients with liver cancer, 233 patients with esophageal cancer (EC), 295 patients with renal cancer, and 200 patients with melanoma. The formula for preoperative GLR calculation was as follows: GLR=glucose/lymphocyte count. The overall survival (OS) was estimated using the Kaplan-Meier method. The predictive factors for OS were determined using multivariate analysis. Results The Kaplan-Meier analysis showed that the median survival time in the high-GLR group was much shorter than that of those in the low-GLR group for different cancers. Cox multivariate regression analysis reveals that preoperative GLR was an independent factor for predicting overall survival in different tumor types. Conclusion Elevated preoperative GLR was remarkably associated with a poorer prognosis in patients with NSCLC, CRC, breast cancer, gastric cancer, kidney cancer, liver cancer, esophageal cancer, and melanoma. Preoperative GLR promises to be an essential predictor of survival for cancer patients.
Collapse
Affiliation(s)
- Le Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bei-bei Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuan-zhou Li
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wen-juan Huang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ye Niu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qing-chun Jia
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wen Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jia-rui Yuan
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shi-di Miao
- Department of Science and Education, School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Rui-tao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guang-yu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Hong X, Hu Y, Yuan Z, Fang Z, Zhang X, Yuan Y, Guo C. Oxidatively Damaged Nucleic Acid: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1153-1167. [PMID: 35946074 DOI: 10.1089/ars.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Our current knowledge of the mechanism between diabetes and cancer is limited. Oxidatively damaged nucleic acid is considered a critical factor to explore the connections between these two diseases. Recent Advances: The link between diabetes mellitus and cancer has attracted increasing attention in recent years. Emerging evidence supports that oxidatively damaged nucleic acid caused by an imbalance between reactive oxygen species generation and elimination is a bridge connecting diabetes and cancer. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine assume important roles as biomarkers in assessing the relationship between oxidatively damaged nucleic acid and cancer. Critical Issues: The consequences of diabetes are extensive and may lead to the occurrence of cancer by influencing a combination of factors. At present, there is no direct evidence that diabetes causes cancer by affecting a single factor. Furthermore, the difficulty in controlling variables and differences in detection methods lead to poor reliability and repeatability of results, and there are no clear cutoff values for biomarkers to indicate cancer risk. Future Directions: A better understanding of connections as well as mechanisms between diabetes and cancer is still needed. Both diabetes and cancer are currently intractable diseases. Further exploration of the specific mechanism of oxidatively damaged nucleic acid in the connection between diabetes and cancer is urgently needed. In the future, it is necessary to further take oxidatively damaged nucleic acid as an entry point to provide new ideas for the diagnosis and treatment of diabetes and cancer. Experimental drugs targeting the repair process of oxidatively generated damage require an extensive preclinical evaluation and could ultimately provide new treatment strategies for these diseases. Antioxid. Redox Signal. 37, 1153-1167.
Collapse
Affiliation(s)
- Xiujuan Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihao Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Shahid RK, Ahmed S, Le D, Yadav S. Diabetes and Cancer: Risk, Challenges, Management and Outcomes. Cancers (Basel) 2021; 13:5735. [PMID: 34830886 PMCID: PMC8616213 DOI: 10.3390/cancers13225735] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Diabetes mellitus and cancer are commonly coexisting illnesses, and the global incidence and prevalence of both are rising. Cancer patients with diabetes face unique challenges. This review highlights the relationship between diabetes and cancer and various aspects of the management of diabetes in cancer patients. METHODS A literature search using keywords in PubMed was performed. Studies that were published in English prior to July 2021 were assessed and an overview of epidemiology, cancer risk, outcomes, treatment-related hyperglycemia and management of diabetes in cancer patients is provided. RESULTS Overall, 8-18% of cancer patients have diabetes as a comorbid medical condition. Diabetes is a risk factor for certain solid malignancies, such as pancreatic, liver, colon, breast, and endometrial cancer. Several novel targeted compounds and immunotherapies can cause hyperglycemia. Nevertheless, most patients undergoing cancer therapy can be managed with an appropriate glucose lowering agent without the need for discontinuation of cancer treatment. Evidence suggests that cancer patients with diabetes have higher cancer-related mortality; therefore, a multidisciplinary approach is important in the management of patients with diabetes and cancer for a better outcome. CONCLUSIONS Future studies are required to better understand the underlying mechanism between the risk of cancer and diabetes. Furthermore, high-quality prospective studies evaluating management of diabetes in cancer patients using innovative tools are needed. A patient-centered approach is important in cancer patients with diabetes to avoid adverse outcomes.
Collapse
Affiliation(s)
- Rabia K. Shahid
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Shahid Ahmed
- Saskatoon Cancer Center, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK S7N 4H4, Canada; (D.L.); (S.Y.)
| | - Duc Le
- Saskatoon Cancer Center, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK S7N 4H4, Canada; (D.L.); (S.Y.)
| | - Sunil Yadav
- Saskatoon Cancer Center, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK S7N 4H4, Canada; (D.L.); (S.Y.)
| |
Collapse
|
5
|
Rachfal AW, Grant SFA, Schwartz SS. The Diabetes Syndrome - A Collection of Conditions with Common, Interrelated Pathophysiologic Mechanisms. Int J Gen Med 2021; 14:923-936. [PMID: 33776471 PMCID: PMC7987256 DOI: 10.2147/ijgm.s305156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
The four basic pathophysiologic mechanisms which damage the β-cell within diabetes (ie, genetic and epigenetic changes, inflammation, an abnormal environment, and insulin resistance [IR]) also contribute to cell and tissue damage and elevate the risk of developing all typical diabetes-related complications. Genetic susceptibility to damage from abnormal external and internal environmental factors has been described including inflammation and IR. All these mechanisms can promote epigenetic changes, and in total, these pathophysiologic mechanisms interact and react with each other to cause damage to cells and tissues ultimately leading to disease. Importantly, these pathophysiologic mechanisms also serve to link other common conditions including cancer, dementia, psoriasis, atherosclerotic cardiovascular disease (ASCVD), nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). The "Diabetes Syndrome", an overarching group of interrelated conditions linked by these overlapping mechanisms, can be viewed as a conceptual framework that can facilitate understanding of the inter-relationships of superficially disparate conditions. Recognizing the association of the conditions within the Diabetes Syndrome due to common pathophysiologies has the potential to provide both benefit to the patient (eg, prevention, early detection, precision medicine) and to the advancement of medicine (eg, driving education, research, and dynamic decision-based medical practice).
Collapse
Affiliation(s)
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Perlman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perlman School of Medicine, Philadelphia, PA, USA
| | - Stanley S Schwartz
- Stanley Schwartz MD, LLC, Main Line Health System, Wynnewood, PA, USA
- University of Pennsylvania, Perlman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Yu Q, Zhang Z, Zhang H. Effect of Glucose Variability on Pancreatic Cancer Through Regulation of COL6A1. Cancer Manag Res 2021; 13:1291-1298. [PMID: 33603474 PMCID: PMC7884946 DOI: 10.2147/cmar.s293473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 12/28/2022] Open
Abstract
Background Pancreatic cancer (PC), a devastating cancer worldwide, remains dismal prognosis due to its clinical elusiveness, especially in relation to diabetes mellitus (DM). The study aims to investigate the effect of glucose variability on COL6A1 in PC cancer cells and the prognostic potential of COL6A1 for PC patient associated with DM. Methods After PC cancer cell lines of AsPC-1 and BxPC-3 were treated with hyperglycemia and hypoglycemia, Giemsa staining and Transwell chamber were performed to assay plate clone formation, migration and invasion. Expressions of COL6A1 of PC cancer cell lines under different extracellular glucose levels were detected by qRT-PCR and Western blotting. The level of COL6A1 expression in PC patients with/without DM was further observed with immunohistochemistry. The prognostic impact of COL6A1 on PC patients with DM was assessed by Kaplan–Meier survival curve analysis. Results Hyperglycemia promoted proliferation, migration and invasion of PC cancer cells compared with hypoglycemia. Glucose variability could regulate expression of COL6A1 in PC cancer cells, both Col6a1 mRNA and COL6A1 protein upregulated in cancer cells cultured with hyperglycemic than that with hypoglycemic. The level of COL6A1 expression was higher in PC patients with DM than that without DM. Besides, COL6A1 was significantly associated with the clinical prognosis of PC patients with DM, higher COL6A1 leading to lower overall survival (OS). Conclusion Glucose variability had effect on PC cancer cells through regulation of COL6A1. Accordingly, COL6A1 was associated with poorer prognosis in PC patients with DM.
Collapse
Affiliation(s)
- Qian Yu
- Department of Gastroenterology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Zhong Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Hyperadiposity, as present in obesity, is a substantial threat to cancer risk and prognosis. Studies that have investigated the link between obesity and tumor progression have proposed several mechanistic frameworks, yet, these mechanisms are not fully defined. Further, a comprehensive understanding of how these various mechanisms may interact to create a dynamic disease state is lacking in the current literature. RECENT FINDINGS Recent work has begun to explore not only discrete mechanisms by which obesity may promote tumor growth (for instance, metabolic and growth factor functions of insulin; inflammatory cytokines; adipokines; and others), but also how these putative tumor-promoting factors may interact. SUMMARY This review will highlight the present understanding of obesity, as it relates to tumor development and progression. First, we will introduce the impact of obesity in cancer within the dynamic tumor microenvironment, which will serve as a theme to frame this review. The core of this review will discuss recently proposed mechanisms that implicate obesity in tumor progression, including chronic inflammation and the role of pro-inflammatory cytokines, adipokines, hormones, and genetic approaches. Furthermore, we intend to offer current insight in targeting adipose tissue during the development of cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Andin Fosam
- Department of Internal Medicine
- Department of Cellular & Molecular Physiology, School of Medicine Yale University, TAC, New Haven, Connecticut, USA
| | - Rachel J Perry
- Department of Internal Medicine
- Department of Cellular & Molecular Physiology, School of Medicine Yale University, TAC, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Zhou X, Xu Y, Yin D, Zhao F, Hao Z, Zhong Y, Zhang J, Zhang B, Yin X. Type 2 diabetes mellitus facilitates endometrial hyperplasia progression by activating the proliferative function of mucin O-glycosylating enzyme GALNT2. Biomed Pharmacother 2020; 131:110764. [PMID: 33152927 DOI: 10.1016/j.biopha.2020.110764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is thought to be a risk factor for endometrial hyperplasia, but potential links between the two diseases are unknown. This study aims to evaluate the role of T2DM in the progression of endometrial hyperplasia. METHODS Female Sprague-Dawley rats were randomly divided into normal (N) group, endometrial hyperplasia (NH) group, T2DM (T) group, and endometrial hyperplasia with T2DM (TH) group. Proteomics analysis was performed to determine the protein profile of endometrial tissues. Proliferation, migration, and invasion of cells with/without GLANT2-knockdown were assessed. Immunohistochemical staining and ELISA were used to examine the expression of GALNT2 in endometrial tissues and serum of clinical samples. RESULTS The highest uterus index and endometrial thickness were observed in TH group, with the expression of proliferation marker PCNA increased significantly, indicating that T2DM facilitates the progress of endometrial hyperplasia. Proteomics analysis showed that there were significant differences in protein profiles among groups and differential proteins were mainly enriched in metabolic pathways. Further verification by molecular biology analysis indicated that GALNT2 is the key target for T2DM facilitating endometrial hyperplasia. The expression of GALNT2 was significantly decreased in high glucose environment. T2DM could synergize the proliferative function of GALNT2 aberration by activating EGFR/AKT/ERK pathway. The decreased expressions of GALNT2 in clinical samples were associated with worse subtypes of endometrial hyperplasia. CONCLUSION T2DM promoted the progression of endometrial hyperplasia by regulating the GALNT2-mediated phosphorylation of EGFR and enhancing cell proliferation. GALNT2 has the potential to be a novel biomarker in the treatment of endometrial hyperplasia.
Collapse
Affiliation(s)
- Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yinxue Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Di Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Feng Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhixiang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ya'nan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jingbo Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China.
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
9
|
Abramczyk R, Queller JN, Rachfal AW, Schwartz SS. Diabetes and Psoriasis: Different Sides of the Same Prism. Diabetes Metab Syndr Obes 2020; 13:3571-3577. [PMID: 33116708 PMCID: PMC7548229 DOI: 10.2147/dmso.s273147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes and psoriasis are prevalent conditions with a spectrum of serious adverse outcomes. Both diseases are common comorbidities for each other, and diabetes is considered as a risk factor for psoriasis and vice versa. However, it is our contention that these diseases are not merely comorbidities of each other but rather share common underlying pathophysiologies (ie, genes and epigenetic changes, inflammation, abnormal environment, and insulin resistance) that drive disease. As such, they can be viewed as facets of the same prism. Genes can cause or permit susceptibility to damage from abnormal external and internal environmental factors, inflammation, and insulin resistance which can also drive epigenetic changes. These co-existing mechanisms act in a vicious cycle over time to potentiate cell and tissue damage to ultimately drive disease. Viewing diabetes and psoriasis through the same prism suggests potential for therapies that could be used to treat both conditions. Although additional controlled trials and research are warranted, we believe that our understanding of the overlapping pathophysiologies continues to grow, so too will our therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Stanley S Schwartz
- Stanley Schwartz, LLC, Main Line Health System, Ardmore, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|