1
|
Sumran G, Sharma M, Aggarwal R. Insight into the therapeutic potential of pyrazole-thiazole hybrids: A comprehensive review. Arch Pharm (Weinheim) 2024; 357:e2400576. [PMID: 39367561 DOI: 10.1002/ardp.202400576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
Several pyrazole-thiazole hybrids featuring two potentially bioactive pharmacophores with or without linker have been synthesized using the molecular hybridization approach as target structures by medicinal chemists to modulate multiple drug targets simultaneously. The presented review aims to provide an overview of the diversified and wide array of pharmacological activities of these hybrids bestowing anticancer, antifungal, antibacterial, analgesic, anti-inflammatory, antioxidant, antitubercular, antiviral, antiparasitic, and miscellaneous activities. The structure-activity relationships and potential mechanism of action are also reviewed to shed light on the development of more effective and biotargeted candidates. This review focuses on the latest research advances in the biological profile of pyrazole-thiazole hybrids reported from 2015 to the present, providing medicinal researchers with a comprehensive platform to rationally design and develop more promising pyrazole-thiazole hybrids.
Collapse
Affiliation(s)
- Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, Haryana, India
| | - Manisha Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
| |
Collapse
|
2
|
Hatami A. Phytochemical profiling and antibacterial activities of Ziziphora tenuior root extracts: a molecular docking against VanA of vancomycin-resistant enterococci. 3 Biotech 2024; 14:217. [PMID: 39220828 PMCID: PMC11362404 DOI: 10.1007/s13205-024-04056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Medicinal plants, renowned for their antibacterial phytocompounds and secondary metabolites, hold significant promise in addressing antibiotic-resistant bacterial strains. This study aimed to conduct phytochemical profiling of the methanolic and dichloromethane extracts of Ziziphora tenuior root using the GC-MS technique. These extracts' antioxidant potential was assessed via DPPH assay and their antibacterial activity was evaluated against S. aureus, E. coli, and VRE bacterial strains. Furthermore, the drug-ligand interactions between the extracts' biocompounds and d-alanyl-d-lactate ligase (VanA) protein of vancomycin-resistant enterococci strains (VRE) were analyzed using molecular docking. Based on the results, 74% of methanolic extract consisted of (3methyl, 24S)-stigmast-5-en-3-ol (which is a β-sitosterol), followed by Tetrasiloxane, decamethyl (15.5%), and 1-methyl-4-phenyl-5-thioxo-1,2,4-triazolidin-3-one (10.5%). Also, the only predominant compound identified in the dichloromethane extract was Benzo[h]quinoline, 2,4-dimethyl-. Both extracts showed antioxidant activity, while the antioxidant activity of the methanolic extract (IC50 = 95.33 μg/ml) was significantly higher than that of the dichloromethane extract (IC50 = 934.23 μg/ml). Also, both extracts displayed substantial antibacterial efficacy against the tested pathogens, particularly against VRE. Moreover, the in silico analysis revealed that (3methyl, 24S)-stigmast-5-en-3-ol and Benzo[h]quinoline,2,4-dimethyl- exhibited notable interactions with VanA through docking energy values of - 9.0 and - 9.1 kcal/mol, respectively. Furthermore, these compounds formed 2 and 1 hydrogen bonds with VanA, respectively, highlighting their potential as effective interactants. These findings provide valuable visions into the therapeutic potentials of these plant-derived biocompounds in combating antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Asma Hatami
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| |
Collapse
|
3
|
Gharge S, Alegaon SG. Recent Studies of Nitrogen and Sulfur Containing Heterocyclic Analogues as Novel Antidiabetic Agents: A Review. Chem Biodivers 2024; 21:e202301738. [PMID: 38126280 DOI: 10.1002/cbdv.202301738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
The prevalence of diabetes mellitus is on the rise, which demands the identification of novel antidiabetic drugs. There is a need for safer and more effective alternatives because the therapy methods now available to manage diabetes have limits. Due to their diverse pharmacological characteristics, heterocyclic molecules with nitrogen and Sulfur atoms have become intriguing candidates in medicinal chemistry. These substances have a wide variety of structures that can be customized to target different pathways associated with diabetes and can affect important biological targets involved in glucose homeostasis. This review provides a thorough summary of the most recent studies on heterocyclic analogues of nitrogen and Sulfur as prospective antidiabetic agents. This review examines the variety of their structural forms, their methods of action, and assesses the results of preclinical and clinical investigations on their effectiveness and safety. Additionally, further optimization and development of innovative antidiabetic medications are highlighted, as well as the difficulties and prospects for the future in utilizing the therapeutic potential of these analogues. This study seeks to stimulate additional investigation and cooperation between researchers and medicinal chemists, promoting improvements in the creation of efficient and secure antidiabetic medicines to fulfill the needs in the management of diabetes.
Collapse
Affiliation(s)
- S Gharge
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, KLE Academy of Higher Education and Research, 590 010, Belagavi, Karnataka, India
| | - S G Alegaon
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, KLE Academy of Higher Education and Research, 590 010, Belagavi, Karnataka, India
| |
Collapse
|
4
|
Ungureanu D, Tiperciuc B, Nastasă C, Ionuț I, Marc G, Oniga I, Oniga O. An Overview of the Structure-Activity Relationship in Novel Antimicrobial Thiazoles Clubbed with Various Heterocycles (2017-2023). Pharmaceutics 2024; 16:89. [PMID: 38258100 PMCID: PMC10820536 DOI: 10.3390/pharmaceutics16010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance is an increasing problem for global public health. One of the strategies to combat this issue is the synthesis of novel antimicrobials through rational drug design based on extensive structure-activity relationship studies. The thiazole nucleus is a prominent feature in the structure of many authorized antimicrobials, being clubbed with different heterocycles. The purpose of this review is to study the structure-activity relationship in antimicrobial thiazoles clubbed with various heterocycles, as reported in the literature between 2017 and 2023, in order to offer an overview of the last years in terms of antimicrobial research and provide a helpful instrument for future research in the field.
Collapse
Affiliation(s)
- Daniel Ungureanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (C.N.); (I.I.); (G.M.); (O.O.)
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (C.N.); (I.I.); (G.M.); (O.O.)
| | - Cristina Nastasă
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (C.N.); (I.I.); (G.M.); (O.O.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (C.N.); (I.I.); (G.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (C.N.); (I.I.); (G.M.); (O.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (C.N.); (I.I.); (G.M.); (O.O.)
| |
Collapse
|
5
|
Mekky AEM, Sanad SMH. New thiazole-based bis(Schiff bases) linked to arene units as potential MRSA inhibitors. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2134800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
6
|
Synthesis and Antimicrobial Activity of New Heteroaryl(aryl) Thiazole Derivatives Molecular Docking Studies. Antibiotics (Basel) 2022; 11:antibiotics11101337. [PMID: 36289995 PMCID: PMC9658463 DOI: 10.3390/antibiotics11101337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Herein, we report the design, synthesis, and evaluation of the antimicrobial activity of new heteroaryl (aryl) thiazole derivatives. The design was based on a molecular hybridization approach. The in vitro evaluation revealed that these compounds demonstrated moderate antibacterial activity. The best activity was achieved for compound 3, with MIC and MBC in the range of 0.23–0.7 and 0.47–0.94 mg/mL, respectively. Three compounds (2, 3, and 4) were tested against three resistant strains, namely methicillin resistant Staphylococcus aureus, P. aeruginosa, and E. coli, which showed higher potential than the reference drug ampicillin. Antifungal activity of the compounds was better with MIC and MFC in the range of 0.06–0.47 and 0.11–0.94 mg/mL, respectively. The best activity was observed for compound 9, with MIC at 0.06–0.23 mg/mL and MFC at 0.11–0.47 mg/mL. According to docking studies, the predicted inhibition of the E. coli MurB enzyme is a putative mechanism of the antibacterial activity of the compounds, while inhibition of 14a-lanosterol demethylase is probably the mechanism of their antifungal activity.
Collapse
|
7
|
Bondock S, Albormani O, Fouda AM. Facile Synthesis and Anticancer Evaluation of Novel 1-(Thiazol-2-yl)-3-(thiazol-5-yl)-5-(thiophen-2-yl) Pyrazolines. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222060226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Kartsev V, Geronikaki A, Lichitsky B, Komogortsev A, Petrou A, Ivanov M, Glamočlija J, Soković M. Synthesis, biological evaluation and molecular docking studies of thiazolo[4,5‐
b
]pyridin‐5‐ones as antimicrobial agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Athina Geronikaki
- School of Health, Department of Pharmacy Aristotle University of Thessaloniki Greece
| | | | | | - Anthi Petrou
- School of Health, Department of Pharmacy Aristotle University of Thessaloniki Greece
| | - Marija Ivanov
- Mycological Laboratory, Department of Plant Physiology Institute for Biological Research, SinišaStanković‐National Institute of Republic of Serbia,University of Belgrade, BulevarDespotaStefana 142 Belgrade Serbia
| | - Jasmina Glamočlija
- Mycological Laboratory, Department of Plant Physiology Institute for Biological Research, SinišaStanković‐National Institute of Republic of Serbia,University of Belgrade, BulevarDespotaStefana 142 Belgrade Serbia
| | - Marina Soković
- Mycological Laboratory, Department of Plant Physiology Institute for Biological Research, SinišaStanković‐National Institute of Republic of Serbia,University of Belgrade, BulevarDespotaStefana 142 Belgrade Serbia
| |
Collapse
|
9
|
Farooq S, Ngaini Z. Synthesis of Benzalacetophenone Based Isoxazoline and Isoxazole Derivatives. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220408120350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The demand for natural product based drugs with less cost and efficient procedures has become a challenge to researchers. Benzalacetophenone is a natural product based species that is modified into numerous heterocyclic compounds including isoxazoline and isoxazole derivatives. The utility of isoxazoline and oxazole derivatives has been increased for the synthesis of the new and effective chemical entities to serve medicinal chemistry in the past few years. Isoxazoline and isoxazole are fascinating classes of heterocyclic compounds, which belong to N- and O-heterocycles, and are widely used as precursors for the development of drugs. This review highlights the recent work for the synthesis of mono and bis isoxazoline and isoxazole derivatives using stable benzalacetophenone and functionalization of isoxazoline and isoxazole, along with the prevailing biological properties.
Collapse
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
10
|
Bondock S, Albormani O, Fouda AM. Expedient Synthesis and Antitumor Evaluation of Novel Azaheterocycles from Thiazolylenaminone. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2039236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Samir Bondock
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Omeer Albormani
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed M. Fouda
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
11
|
Aggarwal R, Hooda M, Jain N, Sanz D, Claramunt RM, Twamley B, Rozas I. An efficient, one-pot, regioselective synthesis of 2-aryl/hetaryl-4-methyl-5-acylthiazoles under solvent-free conditions. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.1975119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
| | - Mona Hooda
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Dionisia Sanz
- Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, UNED, Madrid, Spain
| | - Rosa M. Claramunt
- Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, UNED, Madrid, Spain
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin2, Ireland
| | - Isabel Rozas
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin2, Ireland
| |
Collapse
|
12
|
Othman IMM, Gad‐Elkareem MAM, Radwan HA, Badraoui R, Aouadi K, Snoussi M, Kadri A. Synthesis, Structure‐Activity Relationship and in silico Studies of Novel Pyrazolothiazole and Thiazolopyridine Derivatives as Prospective Antimicrobial and Anticancer Agents. ChemistrySelect 2021. [DOI: 10.1002/slct.202101622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ismail M. M. Othman
- Department of Chemistry Faculty of Science Al-Azhar University Assiut 71524 Egypt
| | | | - Hyam A. Radwan
- Department of Chemistry Faculty of Women for Arts, Sciences and, Education Ain Shams University Cairo Egypt
| | - Riadh Badraoui
- Department of Biology College of Science University of Ha'il City 2440 Hail, P.O. 2440 Saudi Arabia
- Section of Histology-Cytology Medicine Faculty of Tunis El Manar University 1007 La Rabta-Tunis Tunisia
- Laboratory of Histo-Embryology and Cytogenetics Medicine Faculty of Sfax University 3029 Sfax Tunisia
| | - Kaïss Aouadi
- Department of Chemistry College of Science Qassim University Buraidah 51452 Saudi Arabia
- University of Monastir Faculty of Sciences of Monastir Avenue of the Environment 5019 Monastir Tunisia
| | - Mejdi Snoussi
- Department of Biology College of Science University of Ha'il City 2440 Hail, P.O. 2440 Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-resources (LR11ES41) University of Monastir Higher Institute of Biotechnology of Monastir Avenue Tahar Haddad, BP74 5000 Monastir Tunisia
| | - Adel Kadri
- Faculty of Science of Sfax Department of Chemistry University of Sfax B.P. 1171, 3000 Sfax Tunisia
- Department of Chemistry Faculty of Science and Arts of Baljurashi Albaha University Saudi Arabia
| |
Collapse
|
13
|
Petrou A, Fesatidou M, Geronikaki A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021; 26:3166. [PMID: 34070661 PMCID: PMC8198555 DOI: 10.3390/molecules26113166] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. OBJECTIVE To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. RESULTS Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.
Collapse
Affiliation(s)
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (M.F.)
| |
Collapse
|
14
|
Althagafi I, Abdel-Latif E. Synthesis and Antibacterial Activity of New Imidazo[1,2-a]pyridines Festooned with Pyridine, Thiazole or Pyrazole Moiety. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1894185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ismail Althagafi
- Department of Chemistry, College of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ehab Abdel-Latif
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
15
|
Bondock S, Nasr T. Synthesis and Antimicrobial Activity of New 4-Methyl-2-(3-pyridyl)thiazolyl Chalcones and Pyrazolines. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221030178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
An Overview of the Synthesis and Antimicrobial, Antiprotozoal, and Antitumor Activity of Thiazole and Bisthiazole Derivatives. Molecules 2021; 26:molecules26030624. [PMID: 33504100 PMCID: PMC7865802 DOI: 10.3390/molecules26030624] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Thiazole, a five-membered heteroaromatic ring, is an important scaffold of a large number of synthetic compounds. Its diverse pharmacological activity is reflected in many clinically approved thiazole-containing molecules, with an extensive range of biological activities, such as antibacterial, antifungal, antiviral, antihelmintic, antitumor, and anti-inflammatory effects. Due to its significance in the field of medicinal chemistry, numerous biologically active thiazole and bisthiazole derivatives have been reported in the scientific literature. The current review provides an overview of different methods for the synthesis of thiazole and bisthiazole derivatives and describes various compounds bearing a thiazole and bisthiazole moiety possessing antibacterial, antifungal, antiprotozoal, and antitumor activity, encouraging further research on the discovery of thiazole-containing drugs.
Collapse
|
17
|
El-Din A. Abuo-Rahma G, Hassan A, A. Hassan H, Abdelhamid D. Synthetic Approaches toward Certain Structurally Related Antimicrobial Thiazole Derivatives (2010-2020). HETEROCYCLES 2021. [DOI: 10.3987/rev-21-956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Zhang Z, Shu B, Zhang Y, Deora GS, Li QS. 2,4,5-Trisubstituted Thiazole: A Privileged Scaffold in Drug Design and Activity Improvement. Curr Top Med Chem 2020; 20:2535-2577. [DOI: 10.2174/1568026620999200917153856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
Thiazole is an important 5-membered heterocyclic compound containing nitrogen and sulfur
atoms with various pharmaceutical applications including anti-inflammatory, anti-cancer, anti-viral, hypoglycemic,
anti-bacterial and anti-fungal activities. Until now, the FDA-approved drugs containing thiazole
moiety have achieved great success such as dasatinib and dabrafenib. In recent years, considerable
research has been focused on thiazole derivatives, especially 2,4,5-trisubstituted thiazole derivatives,
due to their multiple medicinal applications. This review covers related literature in the past 20 years,
which reported the 2,4,5-trisubstituted thiazole as a privileged scaffold in drug design and activity improvement.
Moreover, this review aimed to provide greater insights into the rational design of more potent
pharmaceutical molecules based on 2,4,5-trisubstituted thiazole in the future.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230601, China
| | - Bing Shu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yaodong Zhang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450018, China
| | - Girdhar Singh Deora
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Qing-Shan Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230601, China
| |
Collapse
|
19
|
Sirakanyan SN, Kartsev VG, Geronikaki A, Spinelli D, Petrou A, Hakobyan EK, Glamoclija J, Ivanov M, Sokovic M, Hovakimyan AA. Synthesis and Evaluation of Antimicrobial Activity and Molecular Docking of New N-1,3-thiazol-2-ylacetamides of Condensed Pyrido[3',2':4,5] furo(thieno)[3,2-d]pyrimidines. Curr Top Med Chem 2020; 20:2192-2209. [DOI: 10.2174/1568026620666200628145308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
Background:
From the literature it is known that many derivatives of fused thienopyrimidines
and furopyrimidines possess broad spectrum of biological activity.
Objectives:
The current studies describe the synthesis and evaluation of antimicrobial activity of some
new N-1,3-thiazol-2-ylacetamides of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines.
Methods:
By cyclocondensation of ethyl 1-aminofuro(thieno)[2,3-b]pyridine-2-carboxylates 1with formamide
were converted to the pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidin-7(8)-ones 2.Alkylation of
compound 2 with 2-chloro-N-1,3-thiazol-2-ylacetamide led to the aimed N-1,3-thiazol-2-ylaceta-mides of
pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines 3. Starting from compound 2 the relevant S-alkylated derivatives
of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines 6 were also synthesized.
Results:
All the compounds showed antibacterial activity to non-resistant strains. Compounds 3a-3m
showed antibacterial activity with MIC/MBC at 0.08-2.31 mg/mL/0.11-3.75 mg/mL .The two most active
compounds, 3j and 6b, appeared to be more active towards MRSA than the reference drugs. Half of the
tested compounds appeared to be equipotent/more potent than ketoconazole and more potent than bifonazole.
The docking analysis provided useful information about the interactions occurring between the tested
compounds and the different enzymes.
Conclusion:
Gram-negative and Gram-positive bacteria and fungi showed different response towards
tested compounds, indicating that different substituents may lead to different modes of action or that the
metabolism of some bacteria/fungi was better able to overcome the effect of the compounds or adapt to it.
Collapse
Affiliation(s)
- Samuel N. Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of RA, 26 Azatutian Ave., Yerevan 0014, Armenia
| | | | - Athina Geronikaki
- Aristotle University of Thessaloniki, School of Pharmacy, Thessaloniki, 54124, Greece
| | - Domenico Spinelli
- Department of Chemistry G. Ciamician, Alma Mater Studiorum- Universita di Bologna, Via F. Selmi 2, Bologna 40126, Italy
| | - Anthi Petrou
- Aristotle University of Thessaloniki, School of Pharmacy, Thessaloniki, 54124, Greece
| | - Elmira K. Hakobyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of RA, 26 Azatutian Ave., Yerevan 0014, Armenia
| | - Jasmina Glamoclija
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research Sinisa Stankovic, National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Manija Ivanov
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research Sinisa Stankovic, National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Marina Sokovic
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research Sinisa Stankovic, National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Anush A. Hovakimyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of RA, 26 Azatutian Ave., Yerevan 0014, Armenia
| |
Collapse
|
20
|
Bondock S, Alqahtani S, Fouda AM. Synthesis and anticancer evaluation of some new pyrazolo[3,4‐
d
][1,2,3]triazin‐4‐ones, pyrazolo[1,5‐
a
]pyrimidines, and imidazo[1,2‐
b
]pyrazoles clubbed with carbazole. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Samir Bondock
- Chemistry Department, Faculty of Science King Khalid University Abha Saudi Arabia
- Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| | - Salwa Alqahtani
- Chemistry Department, Faculty of Science and Arts King Khalid University Sarat Abidah Saudi Arabia
| | - Ahmed M. Fouda
- Chemistry Department, Faculty of Science King Khalid University Abha Saudi Arabia
| |
Collapse
|
21
|
Adole VA, Pawar TB, Jagdale BS. DFT computational insights into structural, electronic and spectroscopic parameters of 2-(2-Hydrazineyl)thiazole derivatives: a concise theoretical and experimental approach. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1817456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vishnu A. Adole
- Department of Chemistry, Arts, Science and Commerce College, Manmad, Nashik, India
| | - Thansing B. Pawar
- Department of Chemistry, Loknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati, Nashik, India
| | - Bapu S. Jagdale
- Department of Chemistry, Arts, Science and Commerce College, Manmad, Nashik, India
| |
Collapse
|
22
|
Synthesis, Characterization and Bioassay of Novel Substituted 1-(3-(1,3-Thiazol-2-yl)phenyl)-5-oxopyrrolidines. Molecules 2020; 25:molecules25102433. [PMID: 32456041 PMCID: PMC7288019 DOI: 10.3390/molecules25102433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022] Open
Abstract
Thiazole derivatives attract the attention of scientists both in the field of organic synthesis and bioactivity research due to their high biological activity. In the present study, thiazole ring was obtained by the interaction of 1-(4-(bromoacetyl)phenyl)-5-oxopyrrolidine-3-carboxylic acid with thiocarbamide or benzenecarbothioamide, as well as tioureido acid. A series of substituted 1-(3-(1,3-thiazol-2-yl)phenyl)-5-oxopyrrolidines with pyrrolidinone, thiazole, pyrrole, 1,2,4-triazole, oxadiazole and benzimidazole heterocyclic fragments were synthesized and their antibacterial properties were evaluated against Gram-positive strains of Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes and Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica enteritidis. The vast majority of compounds exhibited between twofold and 16-fold increased antibacterial effect against the test-cultures when compared with Oxytetracycline.
Collapse
|
23
|
Raslan MA, Sayed SM. Synthesis of some new thiazolo[3,2‐
a
]pyridine,
bi‐thiazole‐thiazole
,
bi‐thiazole‐pyrazole
and
bi‐thiazole‐thiophene
derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- M. A. Raslan
- Chemistry Department, Faculty of ScienceAswan University Aswan Egypt
| | - S. M. Sayed
- Chemistry Department, Faculty of ScienceAswan University Aswan Egypt
| |
Collapse
|
24
|
Ramadan AM, Alshehri AA, Bondock S. Synthesis, physico-chemical studies and biological evaluation of new metal complexes with some pyrazolone derivatives. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Abstract
Thiazoles have attracted much synthetic interest due to their wide variety of biological properties and are important members of heterocyclic compounds. In recent years, studies on the synthesis of thiazole compounds have been increasing because of the properties of this core. In particular, the hybrid structures in which the thiazole ring and the other nuclei are linked have gained popularity. Hybrid structures are formed by the combination of different groups of chemical reactivity and biological activity characteristics. In this review, we highlight recent developments related to hybrid structures containing a thiazole core, recently developed as anticancer, antibacterial, anti-inflammatory, analgesic, anti-tubercular, antialzheimer and antidiabetic compounds.
Collapse
|
26
|
Pathania S, Narang RK, Rawal RK. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur J Med Chem 2019; 180:486-508. [PMID: 31330449 DOI: 10.1016/j.ejmech.2019.07.043] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
From many decades, S-heterocycles have maintained their status as an important part and core of FDA approved drugs and medicinally active compounds. With exhaustive exploration of nitrogen heterocycles in medicinal chemistry, researchers have shifted their interest towards other heterocycles, especially, S-heterocycles. Thus several attempts have been made to synthesize a variety of new sulphur containing compounds with high medicinal value and low toxicity profile, in comparison to previous N-heterocycles. Till today, S-heterocycle containing compounds have been largely reported as anticancer, antidiabetic, antimicrobial, antihypertension, antivral, antinflammatory etc. In this review, the authors have tried to provide a critical analysis of synthesis and medicinal attributes of sulphur containing heterocycles such as thiirane, thiophene, thiazole, thiopyran, thiazolidine etc reported within last five years to emphasize the significance and usefulness of these S-heterocycles in the drug discovery process.
Collapse
Affiliation(s)
- Shelly Pathania
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, 142001, Punjab, India; Research Scholar, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Raj Kumar Narang
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, 142001, Punjab, India
| | - Ravindra K Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, 133207, Haryana, India.
| |
Collapse
|
27
|
Fischer G. Recent advances in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Liaras K, Fesatidou M, Geronikaki A. Thiazoles and Thiazolidinones as COX/LOX Inhibitors. Molecules 2018; 23:E685. [PMID: 29562646 PMCID: PMC6017610 DOI: 10.3390/molecules23030685] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a natural process that is connected to various conditions and disorders such as arthritis, psoriasis, cancer, infections, asthma, etc. Based on the fact that cyclooxygenase isoenzymes (COX-1, COX-2) are responsible for the production of prostaglandins that play an important role in inflammation, traditional treatment approaches include administration of non-steroidal anti-inflammatory drugs (NSAIDs), which act as selective or non-selective COX inhibitors. Almost all of them present a number of unwanted, often serious, side effects as a consequence of interference with the arachidonic acid cascade. In search for new drugs to avoid side effects, while maintaining high potency over inflammation, scientists turned their interest to the synthesis of dual COX/LOX inhibitors, which could provide numerous therapeutic advantages in terms of anti-inflammatory activity, improved gastric protection and safer cardiovascular profile compared to conventional NSAIDs. Τhiazole and thiazolidinone moieties can be found in numerous biologically active compounds of natural origin, as well as synthetic molecules that possess a wide range of pharmacological activities. This review focuses on the biological activity of several thiazole and thiazolidinone derivatives as COX-1/COX-2 and LOX inhibitors.
Collapse
Affiliation(s)
- Konstantinos Liaras
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| | - Maria Fesatidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| |
Collapse
|