1
|
Zhao JY, Gao F, Wu M, Li Y, Chen Y, Xiao Z. Microbial synthesis of enantiopure (S)-2-methylbutanoic acid via L-isoleucine catabolism in Bacillus spizizenii. World J Microbiol Biotechnol 2025; 41:117. [PMID: 40148725 DOI: 10.1007/s11274-025-04324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Enantiopure (S)-2-methylbutanoic acid [(S)-2-MBA] is a high-value chiral compound with applications in fragrances, pharmaceuticals, and agrochemicals. However, conventional chemical synthesis lacks stereoselectivity, while existing biosynthetic methods suffer from low yield and purity. Here, we report a novel microbial process using Bacillus spizizenii ATCC 6633 for efficient (S)-2-MBA production via L-isoleucine catabolism. Through targeted screening of rhizospheric soil isolates and Bacillaceae strains, ATCC 6633 demonstrated superior performance, producing 3.67 g/L (S)-2-MBA with 99.32% enantiomeric excess (ee) under optimized conditions (45 °C, 8% inoculation, 5 g/L glucose, and 8 g/L L-isoleucine). A 58.92% conversion efficiency was achieved, and a simplified purification process recovered 63.90% product with 97.32% purity. Mechanistic studies suggested glucose depletion triggered (S)-2-MBA accumulation, aligning with starvation-induced secondary metabolism. This cost-effective, eco-friendly approach eliminates racemic separation steps and harsh reagents, positioning ATCC 6633 as a promising biocatalyst for sustainable (S)-2-MBA production.
Collapse
Affiliation(s)
- Jing-Yi Zhao
- Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Fan Gao
- Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Mengru Wu
- Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Yang Li
- Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Yong Chen
- Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Zijun Xiao
- Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China.
| |
Collapse
|
2
|
Şahin E. Efficient bioreduction of 1-(furan-2-yl)ethanone into enantiomerically pure drug precursor by Lactobacillus paracasei BD101. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Che C, Zhang W, Men Y, Li H, Qin B, Jia X, You S. Development of an enzymatic process for the synthesis of (1S)-2-chloro-1-(3, 4-difluorophenyl) ethanol, the key intermediate of ticagrelor. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
4
|
Efficient Biosynthesis of (S)-1-chloro-2-heptanol Catalyzed by a Newly Isolated Fungi Curvularia hominis B-36. Catalysts 2022. [DOI: 10.3390/catal13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
(S)-1-chloro-2-heptanol is an enantiopure chemical of great value that can synthesize Treprostinil for treating primary pulmonary hypertension. In this work, a new strain B-36, capable of asymmetric reduction of 1-chloro-2-heptanone to (S)-1-chloro-2-heptanol, was screened and identified as Curvularia hominis B-36 (CCTCC M 2017654) based on the morphological and internally transcribed spacer (ITS) sequence. The reductive capacity of Curvularia hominis B-36 was investigated as a whole-cell biocatalyst in the bioreduction, and the excellent yield (97.2%) and enantiomeric excess (ee) value (99.9%) were achieved under the optimal conditions as follows: 75 mM 1-chloro-2-heptanone, K2HPO4-KH2PO4 (100 mM, pH 6.0), 50 g L−1 resting cells (dry cell weight; DCW), 15% (v/v) isopropanol as co-substrate, 200 rpm, 30 °C, 20 h. The scaled-up biocatalytic process was accomplished at a bioreactor in a 1.5 L working volume, showing superb yield (~97%) and selectivity (99.9%). The product (S)-1-chloro-2-heptanol was purified and characterized by NMR. Curvularia hominis B-36 is a novel catalyst and the asymmetric synthesis route is benign and eco-friendly.
Collapse
|
5
|
Zhang Y, Duan ZW, Liu HY, Qian F, Wang P. Synergistic promotion for microbial asymmetric preparation of (R)-2-chloro-1-(2,4-dichlorophenyl)ethanol by NADES and cyclodextrin. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Wang T, Yang K, Tian Q, Han R, Zhang X, Li A, Zhang L. Acetoacetyl-CoA reductase PhaB as an excellent anti-Prelog biocatalyst for the synthesis of chiral β-hydroxyl ester and the molecular basis of its catalytic performance. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Gal CA, Barabás LE, Bartha Vári JH, Moisă ME, Balogh-Weiser D, Bencze LC, Poppe L, Paizs C, Toșa MI. Lipase on carbon nanotubes – an active, selective, stable and easy-to-optimize nanobiocatalyst for kinetic resolutions. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00342a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An efficient biocatalyst was obtained by covalent immobilization of lipase B from C. antarctica on functionalized SwCNTs for the kinetic resolution of some aryl-ethanols in batch and continuous-flow modes.
Collapse
Affiliation(s)
- Cristian Andrei Gal
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Enzymology and Applied Biocatalysis Research Center, Arany János 11, Cluj-Napoca 400028, România
| | - Laura Edit Barabás
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Enzymology and Applied Biocatalysis Research Center, Arany János 11, Cluj-Napoca 400028, România
| | - Judith-Hajnal Bartha Vári
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Enzymology and Applied Biocatalysis Research Center, Arany János 11, Cluj-Napoca 400028, România
| | - Mădălina Elena Moisă
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Enzymology and Applied Biocatalysis Research Center, Arany János 11, Cluj-Napoca 400028, România
| | - Diana Balogh-Weiser
- Budapest University of Technology and Economics, Department of Organic Chemistry and Technology, Műegyetem rkp. 3. Budapest, H-1111, Hungary
- Budapest University of Technology and Economics, Department of Physical Chemistry and Materials Science, Műegyetem rkp. 3. Budapest, H-1111, Hungary
| | - László Csaba Bencze
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Enzymology and Applied Biocatalysis Research Center, Arany János 11, Cluj-Napoca 400028, România
| | - László Poppe
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Enzymology and Applied Biocatalysis Research Center, Arany János 11, Cluj-Napoca 400028, România
- Budapest University of Technology and Economics, Department of Organic Chemistry and Technology, Műegyetem rkp. 3. Budapest, H-1111, Hungary
| | - Csaba Paizs
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Enzymology and Applied Biocatalysis Research Center, Arany János 11, Cluj-Napoca 400028, România
| | - Monica Ioana Toșa
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Enzymology and Applied Biocatalysis Research Center, Arany János 11, Cluj-Napoca 400028, România
| |
Collapse
|