1
|
Odeh DM, Odeh MM, Hafez TS, Hassan AS. Bioactive Fused Pyrazoles Inspired by the Adaptability of 5-Aminopyrazole Derivatives: Recent Review. Molecules 2025; 30:366. [PMID: 39860235 PMCID: PMC11767260 DOI: 10.3390/molecules30020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Heterocyclic compounds, especially those containing the pyrazole moiety, are highly significant in organic chemistry and possess remarkable and diverse biological properties. The 5-aminopyrazole derivatives are key starting materials for the synthesis of numerous bioactive compounds such as pyrazolopyridine, pyrazolopyrimidine, pyrazoloquinazoline, and pyrazolotriazine derivatives. Many compounds inspired by the 5-aminopyrazole derivatives possess a wide spectrum of biological activities and medicinal applications such as antioxidants, anticancer agents, enzyme inhibitors, antimicrobials, and anti-tuberculosis activities. This review summarizes the recently reported synthesis methods and biological activities of fused pyrazole and pyrazole-based derivatives based on 5-aminopyrazole compounds within the last 5 years (2020 to present). One of the important goals of this review is to illustrate future strategies for the design, development, and utilization of pyrazole products as potent drugs.
Collapse
Affiliation(s)
- Dana M. Odeh
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, P.O. Box 733, Irbid 21110, Jordan
| | - Mohanad M. Odeh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Taghrid S. Hafez
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt;
| |
Collapse
|
2
|
Aggarwal R, Sharma S, Jain N, Sanz D, Claramunt RM, Delgado P, Torralba MC. Reaction of unsymmetrical α-bromo-1,3-diketones with N-substituted thioureas: regioselective access to 2-( N-arylamino)-5-acyl-4-methylthiazoles and/or rearranged 2-( N-acylimino)-3- N-aryl-4-methylthiazoles. RSC Adv 2024; 14:35585-35600. [PMID: 39524089 PMCID: PMC11544347 DOI: 10.1039/d4ra05436a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024] Open
Abstract
The present study reports some fascinating results of Hantzsch's [3 + 2] cyclic condensation of α-bromo-1,3-diketones, a tri-electrophilic synthon generated in situ by bromination of 1,3-diketones using the mild brominating reagent NBS with trinucleophilic N-substituted thioureas. Interestingly, out of a total of 20 combinations, 10 resulted in the exclusive formation of the desired 2-(N-arylamino)-5-acyl-4-methylthiazoles regioselectively, seven led to the formation of unexpected 2-(N-acylimino)-3-N-aryl-4-methylthiazoles through an interesting C-N acyl migration, and three furnished a mixture consisting of both products. The regioselectivity pattern of the two products may be attributed to a greater electrophilicity of the carbonyl carbon of the acetyl group than that of the acyl group towards both nitrogens of thiourea. The structures of the thiazole derivatives were unambiguously assigned using 1H-NMR, 13C-NMR, and rigorous heteronuclear 2D-NMR [(1H-13C) HMQC and (1H-13C) HMBC] spectroscopic techniques. The outcomes of the spectroscopic experiments were further concurred through X-ray crystallographic studies, and a plausible mechanism for acyl migration was proposed for the formation of the unexpected rearranged product.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University Kurukshetra Haryana India
- CSIR-National Institute of Science Communication and Policy Research New Delhi India +91 9896740740
| | - Shilpa Sharma
- Department of Chemistry, Kurukshetra University Kurukshetra Haryana India
| | - Naman Jain
- Department of Chemistry, Kurukshetra University Kurukshetra Haryana India
| | - Dionisia Sanz
- Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, UNED Avenida Esparta s/n, Las Rozas E-28232 Madrid Spain
| | - Rosa M Claramunt
- Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, UNED Avenida Esparta s/n, Las Rozas E-28232 Madrid Spain
| | - Patricia Delgado
- Unidad de Difracción de Rayos X - CAI de Técnicas Químicas, Facultad de Ciencias Químicas, UCM E-28040 Madrid Spain
| | - M Carmen Torralba
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, UCM E-28040 Madrid Spain
| |
Collapse
|
3
|
Rafique I, Maqbool T, Rutjes FPJT, Irfan A, Jardan YAB. Anti-Diabetic Activities and Molecular Docking Studies of Aryl-Substituted Pyrazolo[3,4-b]pyridine Derivatives Synthesized via Suzuki Cross-Coupling Reaction. Pharmaceuticals (Basel) 2024; 17:1326. [PMID: 39458967 PMCID: PMC11510069 DOI: 10.3390/ph17101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Pyrazolo[3,4-b]pyridine scaffolds have been heavily exploited in the development of nitrogen-containing heterocycles with numerous therapeutic applications in the field of medicinal and pharmaceutical chemistry. The present work describes the synthesis of eighteen biaryl pyrazolo[3,4-b]pyridine ester (6a-i) and hydrazide (7a-i) derivatives via the Suzuki cross-coupling reaction. These derivatives were subsequently screened for their therapeutic potential to inhibit the diabetic α-amylase enzyme, which is a key facet of the development of anti-diabetic agents. Initially, the ethyl 4-(4-bromophenyl)-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridine-6-carboxylate 4 was synthesized through a modified Doebner method under solvent-free conditions, providing an intermediate for further derivatization with a 60% yield. This intermediate 4 was subjected to Suzuki cross-coupling, reacting with electronically diverse aryl boronic acids to obtain the corresponding pyrazolo[3,4-b]pyridine ester derivatives (6a-i). Following this, the biaryl ester derivatives (6a-i) were converted into hydrazide derivatives (7a-i) through a straightforward reaction with hydrazine monohydrate and were characterized using 1H-NMR, 13C-NMR, and LC-MS spectroscopic techniques. These derivatives were screened for their α-amylase inhibitory chemotherapeutic efficacy, and most of the biaryl ester and hydrazide derivatives demonstrated promising amylase inhibition. In the (6a-i) series, the compounds 6b, 6c, 6h, and 6g exhibited excellent inhibition, with almost similar IC50 values of 5.14, 5.15, 5.56, and 5.20 μM, respectively. Similarly, in the series (7a-i), the derivatives 7a, 7b, 7c, 7d, 7f, 7g, and 7h displayed excellent anti-diabetic activities of 5.21, 5.18, 5.17, 5.12, 5.10, 5.16, and 5.19 μM, respectively. These in vitro results were compared with the reference drug acarbose (IC50 = 200.1 ± 0.15 μM), demonstrating better anti-diabetic inhibitory activity in comparison to the reference drug. The in silico molecular docking study results were consistent with the experimental biological findings, thereby supporting the in vitro pharmaceutical efficacy of the synthesized derivatives.
Collapse
Affiliation(s)
- Iqra Rafique
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.R.); (A.I.)
| | - Tahir Maqbool
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.R.); (A.I.)
| | - Floris P. J. T. Rutjes
- Synthetic Organic Chemistry (SOC) Group, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.R.); (A.I.)
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Aggarwal R, Kumar P, Kumar S, Sadana R, Lwanga R, Campbell J, Chaubal V. Design, Synthesis, and In Vitro Cytotoxic Studies of Some Novel Arylidene-Hydrazinyl-Thiazoles as Anticancer and Apoptosis-Inducing Agents. ACS OMEGA 2024; 9:38832-38845. [PMID: 39310139 PMCID: PMC11411527 DOI: 10.1021/acsomega.4c04924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/25/2024]
Abstract
Cancer, defined by uncontrolled cell growth, poses a significant global health challenge, necessitating the development of new anticancer drugs crucial to address drug resistance, side effects, and the need for combination therapies. The study presents the design, synthesis, and anticancer screening of a series of novel functionalized arylidene-hydrazinyl-thiazoles against various human cancer cell lines. The environmentally benign synthetic protocol involves the visible-light prompted, NBS-mediated domino reaction of thiosemicarbazide, heteroaryl aldehydes, and unsymmetrical 1,3-diketones. The regioselective organic transformation delivered the single regioisomeric product, characterized unambiguously through detailed 2D NMR spectral studies. In vitro cytotoxic studies revealed that the synthesized derivatives exhibited excellent cytotoxic potential against BxPC-3, MOLT-4, and MCF-7 cancer cell lines. Notably, compounds 4m, 4n, and 4r showed significant cytotoxicity, reducing cell survival to 23.85-26.45% for BxPC-3, 30.08-33.30% for MOLT-4, and 44.40-47.63% for MCF-7 at a concentration of 10 μM. These compounds profoundly induced apoptosis, evidenced by increased caspase-3/7 activity, loss of mitochondrial membrane potential, and modulation of Bcl2 and Bax gene expression. Additionally, these compounds caused robust cell cycle arrest at the G2/M phase by inhibiting tubulin polymerization, indicating their multifaceted impact on cancer cells.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department
of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
- Council
of Scientific and Industrial Research-National Institute of Science
Communication and Policy Research, New Delhi 110012, India
| | - Prince Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Suresh Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Rachna Sadana
- Department
of Natural Sciences, University of Houston, Downtown, Houston, Texas 77002, United States
| | - Robert Lwanga
- Department
of Natural Sciences, University of Houston, Downtown, Houston, Texas 77002, United States
| | - Jude Campbell
- Department
of Natural Sciences, University of Houston, Downtown, Houston, Texas 77002, United States
| | - Vaishali Chaubal
- Department
of Natural Sciences, University of Houston, Downtown, Houston, Texas 77002, United States
| |
Collapse
|
5
|
Sepehrmansourie H, Mohammadi Rasooll M, Zarei M, Zolfigol MA, Gu Y. Application of Metal-Organic Frameworks with Sulfonic Acid Tags in the Synthesis of Pyrazolo[3,4- b]pyridines via a Cooperative Vinylogous Anomeric-Based Oxidation. Inorg Chem 2023. [PMID: 37262344 DOI: 10.1021/acs.inorgchem.3c01131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Herein, we report the design and synthesis of Co-MOF-71/imidazole/SO3H as a novel porous catalyst with sulfonic acid tags. The structure and morphology of the catalyst were investigated using various techniques such as Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, scanning electron microscopy (SEM), SEM elemental mapping, energy-dispersive X-ray spectroscopy, Barret-Joyner-Halenda, and N2 adsorption-desorption isotherms. Co-MOF-71/imidazole/SO3H was studied in the preparation of novel pyrazolo[3,4-b]pyridines under mild and green conditions via a cooperative vinylogous anomeric-based oxidation. A wide range of mono and bis pyrazolo[3,4-b]pyridines were synthesized with good to excellent yields (65-82%). A hot filtration test for the heterogeneous nature of the catalyst indicated the high stability of the prepared catalyst. The recyclability of Co-MOF-71/imidazole/SO3H is another advantage of the present methodology. The structures of the final products were confirmed using FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Milad Mohammadi Rasooll
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185359, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
6
|
Kumar S L, Tabassum S, K S S, Govindaraju S. A Mini Review on the Multicomponent Synthesis of Pyridine Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202203668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lokesh Kumar S
- Department of Chemistry CHRIST – Deemed to be University Bengaluru Karnataka India 560029
| | - Sumaiya Tabassum
- Department of Chemistry Surana College Bengaluru Karnataka India
| | - Sagar K S
- Yuvaraja's College (Autonomous) University of Mysore Mysuru Karnataka India
| | - Santhosh Govindaraju
- Department of Sciences & Humanities CHRIST – Deemed to be University Bengaluru Karnataka India
| |
Collapse
|
7
|
Polo-Cuadrado E, Rojas-Peña C, Acosta-Quiroga K, Camargo-Ayala L, Brito I, Cisterna J, Moncada F, Trilleras J, Rodríguez-Núñez YA, Gutierrez M. Design, synthesis, theoretical study, antioxidant, and anticholinesterase activities of new pyrazolo-fused phenanthrolines. RSC Adv 2022; 12:33032-33048. [PMID: 36425206 PMCID: PMC9671100 DOI: 10.1039/d2ra05532e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/03/2022] [Indexed: 10/19/2023] Open
Abstract
Pyrazole-fused phenanthroline compounds were obtained through several synthetic routes. NMR, HRMS, and IR techniques were used to characterize and confirm the chemical structures. Crystal structures were obtained from compounds 3a, 5b, 5j, 5k, and 5n and analyzed using X-ray diffraction. Compounds were evaluated as acetyl (AChE) and butyrylcholinesterase (BChE) inhibitors, and the results showed a moderate activity. Compound 5c presented the best activity against AChE (IC50 = 53.29 μM) and compound 5l against BChE enzyme (IC50 = 119.3 μM). Furthermore, the ability of the synthetic compounds to scavenge cationic radicals DPPH and ABTS was evaluated. Compound 5e (EC50 = 26.71 μg mL-1) presented the best results in the DPPH assay, and compounds 5e, 5f and 5g (EC50 = 11.51, 3.10 and <3 μg mL-1, respectively) showed better ABTS cationic radical scavenging results. Finally, in silico analyses indicated that 71% of the compounds show good oral availability and are within the ranges established by the Lipinski criteria.
Collapse
Affiliation(s)
- Efraín Polo-Cuadrado
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Cristian Rojas-Peña
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Doctorado en Química, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile Santiago Chile
| | - Karen Acosta-Quiroga
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Doctorado en Química, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile Santiago Chile
| | - Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica (LSO-Act-Bio), Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Campus Coloso Antofagasta 02800 Chile
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Campus Coloso Antofagasta 02800 Chile
| | - Félix Moncada
- Departamento de Química, Universidad Nacional de Colombia Av. Cra 30 # 45-03 Bogotá Colombia
| | - Jorge Trilleras
- Grupo de Investigación en Compuestos Heterocíclicos, Universidad del Atlántico Puerto Colombia 081007 Colombia
| | - Yeray A Rodríguez-Núñez
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andrés Bello Republica 275 Santiago 8370146 Chile
| | - Margarita Gutierrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
8
|
Donaire-Arias A, Montagut AM, Puig de la Bellacasa R, Estrada-Tejedor R, Teixidó J, Borrell JI. 1 H-Pyrazolo[3,4- b]pyridines: Synthesis and Biomedical Applications. Molecules 2022; 27:2237. [PMID: 35408636 PMCID: PMC9000541 DOI: 10.3390/molecules27072237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Pyrazolo[3,4-b]pyridines are a group of heterocyclic compounds presenting two possible tautomeric forms: the 1H- and 2H-isomers. More than 300,000 1H-pyrazolo[3,4-b]pyridines have been described which are included in more than 5500 references (2400 patents) up to date. This review will cover the analysis of the diversity of the substituents present at positions N1, C3, C4, C5, and C6, the synthetic methods used for their synthesis, starting from both a preformed pyrazole or pyridine, and the biomedical applications of such compounds.
Collapse
Affiliation(s)
| | | | | | | | | | - José I. Borrell
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain; (A.D.-A.); (A.M.M.); (R.P.d.l.B.); (R.E.-T.); (J.T.)
| |
Collapse
|
9
|
Abaee MS, Hatamifard A, Mojtahedi MM, Notash B, Naderi S. Pseudo-five-component organocatalyzed synthesis of dicyanoanillines using only malononitrile and aromatic aldehydes. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2021.2024573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. Saeed Abaee
- Faculty of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Arezo Hatamifard
- Faculty of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Mohammad M. Mojtahedi
- Faculty of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Behrouz Notash
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Soheila Naderi
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
10
|
Aggarwal R, Jain N, Sharma S, Kumar P, Dubey GP, Chugh H, Chandra R. Visible-light driven regioselective synthesis, characterization and binding studies of 2-aroyl-3-methyl-6,7-dihydro-5H-thiazolo[3,2-a]pyrimidines with DNA and BSA using biophysical and computational techniques. Sci Rep 2021; 11:22135. [PMID: 34764313 PMCID: PMC8586366 DOI: 10.1038/s41598-021-01037-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
In recent times, fused azaheterocycles emerged as impressive therapeutic agents. Binding studies of such azaheterocycles with biomolecules is an important subject for pharmaceutical and biochemical studies aiming at the design and development of new drugs. Fused heterocyclic scaffolds, such as thiazolopyrmidines have long been used in the pharmaceutical industry for the treatment of various diseases. In this study, we have accomplished a regioselective synthesis of 2-aroyl-3-methyl-6,7-dihydro-5H-thiazolo[3,2-a]pyrimidines by the reaction of tetrahydropyrimidine-2(H)-thione with α-bromo-1,3-diketones, generated in situ from 1,3-diketones and NBS, using visible light as an inexpensive, green and renewable energy source under mild reaction conditions with wide-ranging substrate scope. The regioisomer was characterized unambiguously by 2D-NMR [1H-13C] HMBC and [1H-13C] HMQC spectroscopy. In silico toxicity data analysis showed the low toxicity risks of the synthesized compounds. Computational molecular docking studies were carried out to examine the interaction of thiazolo[3,2-a]pyrimidines with calf-thymus DNA (ct-DNA) and Bovine Serum Albumin (BSA). Moreover, different spectroscopic approaches viz. steady-state fluorescence, competitive displacement assay, UV-visible and circular dichroism (CD) along with viscosity measurements were employed to investigate the binding mechanisms of thiazolo[3,2-a]pyrimidines with DNA and BSA. The results thus obtained revealed that thiazolo[3,2-a]pyrimidines offer groove bindings with DNA and showed moderate bindings with BSA.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
- Council of Scientific and Industrial Research, National Institute of Science Communication and Policy Research, New Delhi, 110012, India.
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Shilpa Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gyan Prakash Dubey
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Heerak Chugh
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| |
Collapse
|