1
|
Meng W, Liu C, Wu G, Bai Z, Wang Z, Chen S, Wan S, Liu W. Design, synthesis and antibacterial activity evaluation of ebselen derivatives in NDM-1 producing bacteria. RSC Med Chem 2024; 15:1959-1972. [PMID: 38903944 PMCID: PMC11107446 DOI: 10.1039/d4md00031e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/10/2024] [Indexed: 06/22/2024] Open
Abstract
New Delhi-β-lactamase-1 (NDM-1) is a type of metal-β-lactamase. NDM-1-expressing bacteria can spread rapidly across the globe via plasmid transfer, which greatly undermines the clinical efficacy of the carbapenem. Research on NDM-1 inhibitors has attracted extensive attention. However, there are currently no clinically available NDM-1 inhibitors. Our research group has reported that 1,2-benzisoselenazol-3(2H)-one derivatives as covalent NDM-1 inhibitors can restore the efficacy of meropenem (Mem) against NDM-1 producing strains. In this study, 22 compounds were designed and synthesized, which restored the Mem susceptibility of NDM-1-expressing Escherichia coli. and its minimum inhibitory concentration (MIC) was reduced by 2-16 times. Representative compound A4 showed significant synergistic antibacterial activity against NDM-1-producing carbapenem-resistant Enterobacteriaceae (CRE) isolates. The in vitro NDM-1 enzyme inhibitory activity test showed that the IC50 was 1.26 ± 0.37 μM, which had low cytotoxicity. When combined with meropenem, it showed good combined antibacterial activity. Electrospray ionization mass spectrometry (ESI-MS) analysis demonstrates that compound A4 covalently binds to NDM-1 enzyme. In summary, compound A4 is a potent NDM-1 covalent inhibitor and provides a potential lead compound for drug development in resistant bacteria.
Collapse
Affiliation(s)
- Wanli Meng
- Key Laboratory of Marine Pharmacology, Ministry of Education, College of Medicine, Ocean University of China Qingdao 266003 China
| | - Chenyu Liu
- Faculty of Science, Hong Kong Polytechnic University Kowloon 100872 Hong Kong China
| | - Guangxin Wu
- Key Laboratory of Marine Pharmacology, Ministry of Education, College of Medicine, Ocean University of China Qingdao 266003 China
| | - Zhongyue Bai
- Key Laboratory of Marine Pharmacology, Ministry of Education, College of Medicine, Ocean University of China Qingdao 266003 China
| | - Zhihao Wang
- Key Laboratory of Marine Pharmacology, Ministry of Education, College of Medicine, Ocean University of China Qingdao 266003 China
| | - Sheng Chen
- Faculty of Science, Hong Kong Polytechnic University Kowloon 100872 Hong Kong China
| | - Shengbiao Wan
- Key Laboratory of Marine Pharmacology, Ministry of Education, College of Medicine, Ocean University of China Qingdao 266003 China
| | - Wandong Liu
- Key Laboratory of Marine Pharmacology, Ministry of Education, College of Medicine, Ocean University of China Qingdao 266003 China
| |
Collapse
|
2
|
Crocetti L, Catarzi F, Giovannoni MP, Vergelli C, Bartolucci G, Pallecchi M, Paoli P, Rossi P, Lippi M, Schepetkin IA, Quinn MT, Guerrini G. Ebselen analogues with dual human neutrophil elastase (HNE) inhibitory and antiradical activity. RSC Med Chem 2024; 15:1247-1257. [PMID: 38665832 PMCID: PMC11042244 DOI: 10.1039/d3md00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 04/28/2024] Open
Abstract
Human neutrophil elastase (HNE) plays an essential role in host defense against bacteria but is also involved in several respiratory diseases. Recent reports suggest that compounds exhibiting a combination of HNE inhibitory activity with antiradical properties may be therapeutically beneficial for the treatment of respiratory diseases involving inflammation and oxidative stress. We report here the synthesis and biological evaluation of novel ebselen analogues exhibiting HNE inhibitory and antiradical activities. HNE inhibition was evaluated in an enzymatic system using human HNE, whereas antiradical activity was evaluated in a cell-based assay system using phorbol 12-myristate 13-acetate (PMA)-stimulated murine bone marrow leukocytes as the source of reactive oxygen species (ROS). HNE inhibition was due to the N-CO group targeting Ser195-OH at position 2 of the scaffold, while antiradical activity was due to the presence of the selenium atom. The most active compounds 4d, 4f, and 4j exhibited a good balance between anti-HNE (IC50 = 0.9-1.4 μM) and antiradical activity (IC50 = 0.05-0.7 μM). Additionally, the solid-state structure of 4d was determined and compared to that of the similar compound N-propionyl-1,2-benzisoselenazol-3(2H)-one.
Collapse
Affiliation(s)
- Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| | - Francesca Catarzi
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| | - Maria Paola Giovannoni
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| | - Claudia Vergelli
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| | - Gianluca Bartolucci
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| | - Marco Pallecchi
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence Via Santa Marta 3 50139 Florence Italy
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence Via Santa Marta 3 50139 Florence Italy
| | - Martina Lippi
- Department of Industrial Engineering, University of Florence Via Santa Marta 3 50139 Florence Italy
| | - Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University Bozeman MT 59717 USA
| | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University Bozeman MT 59717 USA
| | - Gabriella Guerrini
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino Italy +39 055 4573683
| |
Collapse
|
3
|
Jin WB, Xu C, Cheng Q, Qi XL, Gao W, Zheng Z, Chan EWC, Leung YC, Chan TH, Wong KY, Chen S, Chan KF. Investigation of synergistic antimicrobial effects of the drug combinations of meropenem and 1,2-benzisoselenazol-3(2H)-one derivatives on carbapenem-resistant Enterobacteriaceae producing NDM-1. Eur J Med Chem 2018; 155:285-302. [PMID: 29894943 DOI: 10.1016/j.ejmech.2018.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/11/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
The worldwide prevalence of NDM-1-producing bacteria has drastically undermined the clinical efficacy of the last line antibiotic of carbapenems, prompting a need to devise effective strategy to preserve their clinical value. Our previous studies have shown that ebselen can restore the efficacy of meropenem against a laboratory strain that produces NDM-1. Here we report the construction of a focused compound library of 1,2-benzisoselenazol-3(2H)-one derivatives which comprise a total of forty-six candidate compounds. The structure-activity relationship of these compounds and their potential to serve as an adjuvant to enhance the antimicrobial efficacy of meropenem against a collection of clinical NDM-1-producing carbapenem-resistant Enterobacteriaceae isolates was examined. Drug combination assays indicated that these derivatives exhibited synergistic antimicrobial activity when used along with meropenem, effectively restoring the activity of carbapenems against the resistant strains tested in a Galleria mellonella larvae in vivo infection model. The mode of inhibition of one compound, namely 11_a38, which was depicted when tested on the purified NDM-1 enzyme, indicated that it could covalently bind to the enzyme and displaced one zinc ion from the active site. Overall, this study provides a novel 1,2-benzisoselenazol-3(2H)-one scaffold that exhibits strong synergistic antimicrobial activity with carbapenems, and low cytotoxicity. The prospect of application of such compounds as carbapenem adjuvants warrants further evaluation.
Collapse
Affiliation(s)
- Wen Bin Jin
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Chen Xu
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Qipeng Cheng
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Xiao Lin Qi
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Wei Gao
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zhiwei Zheng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China
| | - Edward W C Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yun-Chung Leung
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tak Hang Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; Department of Chemistry, McGill University, Montreal, Quebec, H3A 2K6, Canada
| | - Kwok-Yin Wong
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Sheng Chen
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.
| | - Kin-Fai Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
4
|
Crucial role of selenium in the virucidal activity of benzisoselenazol-3(2H)-ones and related diselenides. Molecules 2010; 15:8214-28. [PMID: 21076388 PMCID: PMC6259109 DOI: 10.3390/molecules15118214] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 11/16/2022] Open
Abstract
Various N-substituted benzisoselenazol-3(2H)-ones and their non-selenium-containing analogues have been synthesized and tested against selected viruses (HHV-1, EMCV and VSV) to determine the extent to which selenium plays a role in antiviral activity. The data presented here show that the presence of selenium is crucial for the antiviral properties of benzisoselenazol-3(2H)-ones since their isostructural analogues having different groups but lacking selenium either did not show any antiviral activity or their activity was substantially lower. The open-chain analogues of benzisoselenazol-3(2H)-ones--diselenides also exhibited high antiviral activity while selenides and disulfides were completely inactive towards model viruses.
Collapse
|