1
|
Dalwadi DA, Ozuna L, Harvey BH, Viljoen M, Schetz JA. Adverse Neuropsychiatric Events and Recreational Use of Efavirenz and Other HIV-1 Antiretroviral Drugs. Pharmacol Rev 2018; 70:684-711. [PMID: 29945900 DOI: 10.1124/pr.117.013706] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Efavirenz is a highly effective HIV-1 antiretroviral; however, it is also frequently associated with neuropsychiatric adverse events (NPAE) that include abnormal dreams, sleep disturbances, nervousness, anxiety, depression, and dizziness. The incidence of NPAEs upon initiation of treatment with efavirenz-containing medications is high, exceeding 50% in most studies. Although the NPAEs tend to decrease after the first month in many patients, they persist for long periods of time in others. Efavirenz-based treatment is generally well-tolerated in children, although some experience persistent concentration problems, as well as sleep disturbances, psychotic reactions, and seizures. In an effort to link basic with clinical research, parameters associated with efavirenz brain exposure are discussed, and factors that increase efavirenz levels are explored in depth as they are expected to contribute to NPAE risk. These include the role of modifiable and nonmodifiable risk factors such as diet, weight, and drug-drug interactions and sex, age, and ethnicity/pharmacogenetics. In addition to NPAEs, this review explores what is known about antiretroviral (ARV) drugs being used for recreational purposes. Although multiple ARV drugs are covered, special attention is devoted to efavirenz given that the majority of reports of NPAEs and illicit use of ARV drugs concern efavirenz. The evolving molecular mechanistic basis of NPAEs and abuse of efavirenz point to a complex and polymodal receptor pharmacology. Animal studies to date primarily point to a serotonergic mechanism of action. Recently emerging associations between HIV-associated neurocognitive disorder and efavirenz use, and possible contributions of the mitochondrial-immune-inflammatory-redox cascade are explored in the context of the signaling mechanisms that appear to be involved.
Collapse
Affiliation(s)
- Dhwanil A Dalwadi
- Institute for Healthy Aging, Center for Neuroscience Discovery, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas (D.A.D., L.O., J.A.S.); Centre of Excellence for Pharmaceutical Sciences (PharmaCen), Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa (B.H.H.); and Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa (M.V.)
| | - Luis Ozuna
- Institute for Healthy Aging, Center for Neuroscience Discovery, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas (D.A.D., L.O., J.A.S.); Centre of Excellence for Pharmaceutical Sciences (PharmaCen), Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa (B.H.H.); and Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa (M.V.)
| | - Brian H Harvey
- Institute for Healthy Aging, Center for Neuroscience Discovery, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas (D.A.D., L.O., J.A.S.); Centre of Excellence for Pharmaceutical Sciences (PharmaCen), Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa (B.H.H.); and Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa (M.V.)
| | - Michelle Viljoen
- Institute for Healthy Aging, Center for Neuroscience Discovery, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas (D.A.D., L.O., J.A.S.); Centre of Excellence for Pharmaceutical Sciences (PharmaCen), Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa (B.H.H.); and Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa (M.V.)
| | - John A Schetz
- Institute for Healthy Aging, Center for Neuroscience Discovery, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas (D.A.D., L.O., J.A.S.); Centre of Excellence for Pharmaceutical Sciences (PharmaCen), Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa (B.H.H.); and Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa (M.V.)
| |
Collapse
|
2
|
Novel in vitro-in vivo extrapolation (IVIVE) method to predict hepatic organ clearance in rat. Pharm Res 2011; 29:603-17. [PMID: 22011931 DOI: 10.1007/s11095-011-0607-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 10/10/2011] [Indexed: 01/28/2023]
Abstract
PURPOSE Drug elimination in the liver consists of uptake, metabolism, biliary excretion, and sinusoidal efflux from the hepatocytes to the blood. We aimed to establish an accurate prediction method for liver clearance in rats, considering these four elimination processes. In vitro assays were combined to achieve improved predictions. METHODS In vitro clearances for uptake, metabolism, biliary excretion and sinusoidal efflux were determined for 13 selected compounds with various physicochemical and pharmacokinetic properties. Suspended hepatocytes, liver microsomes and sandwich-cultured hepatocytes were evaluated as in vitro models. Based on the individual processes, in vivo hepatic clearance was calculated. Subsequently, the predicted clearances were compared with the corresponding in vivo values from literature. RESULTS Using this in vitro-in vivo extrapolation method good linear correlation was observed between predicted and reported clearances. Linear regression analysis revealed much improved prediction for the novel method (r(2) = 0.928) as compared to parameter analysis using hepatocyte uptake only (r(2) = 0.600), microsomal metabolism only (r(2) = 0.687) or overall hepatobiliary excretion in sandwich-cultured hepatocytes (r(2) = 0.321). CONCLUSIONS In this new attempt to predict hepatic elimination under consideration of multiple clearance processes, in vivo hepatic clearances of 13 compounds in rats were well predicted using an IVIVE analysis method based on in vitro assays.
Collapse
|