1
|
Sardu ML, Poggesi I. Pharmacokinetics of intranasal drugs, still a missed opportunity? Xenobiotica 2024; 54:424-438. [PMID: 38687903 DOI: 10.1080/00498254.2024.2349046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The intranasal (IN) route of administration is important for topical drugs and drugs intended to act systemically. More recently, direct nose-to-brain input was considered to bypass the blood-brain barrier.Processes related to IN absorption and nose-to-brain distribution are complex and depend, sometimes in contrasting ways, on chemico-physical and structural parameters of the compounds, and on formulation options.Due to the intricacies of these processes and despite the large number of articles published on many different IN compounds, it appears that absorption after IN dosing is not yet fully understood. In particular, at variance of the understanding and modelling approaches that are available for predicting the pharmacokinetics (PK) following oral administration of xenobiotics, it appears that there is not a similar understanding of the chemico-physical and structural determinants influencing drug absorption and disposition of compounds after IN administration, which represents a missed opportunity for this research field. This is even more true regarding the understanding of the direct nose-to-brain input. Due to this, IN administrations may represent an interesting and open research field for scientists aiming to develop PK property predictions tools, mechanistic PK models describing rate and extent of IN absorption, and translational tools to anticipate the clinical PK following IN dosing based on in vitro and in vivo non clinical experiments.This review intends to provide: i) some basic knowledge related to the physiology of PK after IN dosing, ii) a non-exhaustive list of preclinical and clinical examples related to compounds explored for the potential nose-to-blood and nose-to-brain passage, and iii) the identification of some areas requiring improvements, the understanding of which may facilitate the development of IN drug candidates.
Collapse
Affiliation(s)
| | - Italo Poggesi
- Clinical Pharmacology, Modeling and Simulation, GSK, Verona, Italy
| |
Collapse
|
2
|
League-Pascual JC, Lester-McCully CM, Shandilya S, Ronner L, Rodgers L, Cruz R, Peer CJ, Figg WD, Warren KE. Plasma and cerebrospinal fluid pharmacokinetics of select chemotherapeutic agents following intranasal delivery in a non-human primate model. J Neurooncol 2017; 132:401-407. [PMID: 28290002 DOI: 10.1007/s11060-017-2388-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
The blood-brain barrier (BBB) limits entry of most chemotherapeutic agents into the CNS, resulting in inadequate exposure within CNS tumor tissue. Intranasal administration is a proposed means of delivery that can bypass the BBB, potentially resulting in more effective chemotherapeutic exposure at the tumor site. The objective of this study was to evaluate the feasibility and pharmacokinetics (plasma and CSF) of intranasal delivery using select chemotherapeutic agents in a non-human primate (NHP) model. Three chemotherapeutic agents with known differences in CNS penetration were selected for intranasal administration in a NHP model to determine proof of principle of CNS delivery, assess tolerability and feasibility, and to evaluate whether certain drug characteristics were associated with increased CNS exposure. Intravenous (IV) temozolomide (TMZ), oral (PO) valproic acid, and PO perifosine were administered to adult male rhesus macaques. The animals received a single dose of each agent systemically and intranasally in separate experiments, with each animal acting as his own control. The dose of the agents administered systemically was the human equivalent of a clinically appropriate dose, while the intranasal dose was the maximum achievable dose based on the volume limitation of 1 mL. Multiple serial paired plasma and CSF samples were collected and quantified using a validated uHPLC/tandem mass spectrometry assay after each drug administration. Pharmacokinetic parameters were estimated using non-compartmental analysis. CSF penetration was calculated from the ratio of areas under the concentration-time curves for CSF and plasma (AUCCSF:plasma). Intranasal administration was feasible and tolerable for all agents with no significant toxicities observed. For TMZ, the degrees of CSF drug penetration after intranasal and IV administration were 36 (32-57) and 22 (20-41)%, respectively. Although maximum TMZ drug concentration in the CSF (Cmax) was lower after intranasal delivery compared to IV administration due to the lower dose administered, clinically significant exposure was achieved in the CSF after intranasal administration with the lower doses. This was associated with lower systemic exposure, suggesting increased efficiency and potentially lower toxicities of TMZ after intranasal delivery. For valproic acid and perifosine, CSF penetration after intranasal delivery was similar to systemic administration. Although this study demonstrates feasibility and safety of intranasal drug administration, further agent-specific studies are necessary to optimize agent selection and dosing to achieve clinically-relevant CSF exposures.
Collapse
Affiliation(s)
- James C League-Pascual
- Fort Belvoir Community Hospital, Fort Belvoir, VA, USA. .,Pediatric-Oncology Branch, National Cancer Institute, Bethesda, MD, USA.
| | | | | | - Lukas Ronner
- Pediatric-Oncology Branch, National Cancer Institute, Bethesda, MD, USA.,Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, USA
| | - Louis Rodgers
- Pediatric-Oncology Branch, National Cancer Institute, Bethesda, MD, USA.,Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, USA
| | - Rafael Cruz
- Pediatric-Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Cody J Peer
- Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, USA
| | - William D Figg
- Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
3
|
Harrison A, Gardner I, Hay T, Dickins M, Beaumont K, Phipps A, Purkins L, Allan G, Christian R, Duckworth J, Gurrell I, Kempshall S, Savage M, Seymour M, Simpson M, Taylor L, Turnpenny P. Case studies addressing human pharmacokinetic uncertainty using a combination of pharmacokinetic simulation and alternative first in human paradigms. Xenobiotica 2011; 42:57-74. [PMID: 21992032 DOI: 10.3109/00498254.2011.622418] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PF-184298 ((S)-2,3-dichloro-N-isobutyl-N-pyrrolidin-3-ylbenzamide) and PF-4776548 ((3-(4-fluoro-2-methoxy-benzyl)-7-hydroxy-8,9-dihydro-3H,7H-pyrrolo[2,3-c][1,7]naphthyridin-6-one)) are novel compounds which were selected to progress to human studies. Discordant human pharmacokinetic predictions arose from pre-clinical in vivo studies in rat and dog, and from human in vitro studies, resulting in a clearance prediction range of 3 to >20 mL min⁻¹ kg⁻¹ for PF-184298, and 5 to >20 mL min⁻¹ kg⁻¹ for PF-4776548. A package of work to investigate the discordance for PF-184298 is described. Although ultimately complementary to the human pharmacokinetic data in characterising the disposition of PF-184298 in humans, these data did not provide any further confidence in pharmacokinetic prediction. A fit for purpose human pharmacokinetic study was conducted for each compound, with an oral pharmacologically active dose for PF-184298, and an intravenous and oral microdose for PF-4776548. This provided a relatively low cost, clear decision making approach, resulting in the termination of PF-4776548 and further progression of PF-184298. A retrospective analysis of the data showed that, if the tools had been available at the time, the pharmacokinetics of PF-184298 in human could have been predicted from a population based simulation tool in combination with physicochemical properties and in vitro human intrinsic clearance.
Collapse
Affiliation(s)
- Anthony Harrison
- Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Sandwich Laboratories, Sandwich, Kent, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Attkins N, Betts A, Hepworth D, Heatherington AC. Pharmacokinetics and elucidation of the rates and routes of N-glucuronidation of PF-592379, an oral dopamine 3 agonist in rat, dog, and human. Xenobiotica 2010; 40:730-42. [DOI: 10.3109/00498254.2010.514961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|