1
|
Zhang Y, Li X, Sun Y, Liu X, Wang W, Tian J. Pharmacokinetics of S-epacadostat, an indoleamine 2,3-dioxygenase 1 inhibitor, in dog plasma and identification of its metabolites in vivo and in vitro. Biomed Chromatogr 2021; 35:e5226. [PMID: 34388261 DOI: 10.1002/bmc.5226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/06/2022]
Abstract
S-epacadostat (S-EPA) is an efficient and selective small-molecule inhibitor of indoleamine 2,3-dioxygenase 1. It is an EPA analog with a sulfur atom instead of a nitrogen atom at the furazan C3 position. This study documents the pharmacokinetics of S-EPA in dogs and its metabolic pathway. After an oral administration of 15 mg/kg of S-EPA in dogs, the time to peak concentration was 0.80 h, the mean elimination half-life was 7.3 h, and the absolute bioavailability was 55.8%. Furthermore, we identified S-EPA metabolites in dog plasma and dog liver microsomes by UPLC-Q Exactive Orbitrap HRMS. In dog plasma, we found five metabolites, which came from glucuronidation (M1 and M2), deoxygenation (the amidine M4), glucuronidation of M4 (M3), and desulfonamidation and oxidation of M4 (the carboxylic acid M5). In dog liver microsomes, we identified three major metabolites, namely, the glucuronide conjugate (M6), a mono-oxidation product (M7), and a desulfonamidation and oxidation product (M8). Gut microbiota may cause the differences between in vivo and in vitro oxidation metabolisms. Contrary to EPA, S-EPA did not undergo dealkylation, suggesting that substituting the nitrogen with sulfur affects the metabolism of the adjacent alkyl side chain.
Collapse
Affiliation(s)
- Yumu Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Xin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Yufei Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Xinghua Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| |
Collapse
|
2
|
Wang YK, Xiao XR, Xu KP, Li F. Metabolic profiling of the anti-tumor drug regorafenib in mice. J Pharm Biomed Anal 2018; 159:524-535. [PMID: 30055476 DOI: 10.1016/j.jpba.2018.07.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022]
Abstract
Regorafenib is a novel tyrosine kinase inhibitor, which has been approved by the United States Food and Drug Administration for the treatment of various tumors. The purpose of the present study was to describe the metabolic map of regorafenib, and investigate its effect on liver function. Mass spectrometry-based metabolomics approach integrated with multiple mass defect filter was used to determine the metabolites of regorafenib in vitro incubation mixtures (human liver microsomes and mouse liver microsomes), serum, urine and feces samples from mice treated with 80 mg/kg regorafenib. Eleven metabolites including four novel metabolites were identified in the present investigation. As halogen substituted drug, reductive defluorination and oxidative dechlorination metabolites of regorafenib were firstly report in present study. By screening using recombinant cytochrome P450 s (CYPs), CYP3A4 was found to be the principal isoforms involved in regorafenib metabolism. The predication with a molecular docking model confirmed that regorafenib had potential to interact with the active sites of CYP3A4, CYP3A5 and CYP2D6. Serum chemistry analysis revealed no evidence of hepatic damage from regorafenib exposure. This study provided a global view of regorafenib metabolism and its potential side-effects.
Collapse
Affiliation(s)
- Yi-Kun Wang
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Rong Xiao
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Kang-Ping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Fei Li
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|