1
|
Song Z, Xu J, Tian J, Deng J, Deng X, Peng M, Luo W, Wei M, Li Y, Zheng G. Differentiating Tangerine Peels from Other Citrus reticulata through GC-MS, UPLC-Q-Exactive Orbitrap-MS, and HPLC-PDA. ACS OMEGA 2025; 10:1688-1704. [PMID: 39829587 PMCID: PMC11739967 DOI: 10.1021/acsomega.4c09701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
The nonvolatile and volatile compounds in the peels of 13 Citrus reticulata cultivars (4 mandarins, 5 tangerines, and 4 hybrids) and 5 Citrus sinensis (sweet oranges) cultivars were analyzed. Initially, 66 volatile compounds were detected using gas chromatography-mass spectrometry (GC-MS). Tangerines were distinguished from other citrus cultivars (mandarins, sweet oranges, hybrids) by having higher volatile oil extraction rates and higher relative contents of o-Cymene, α-Terpinene, d-α-Pinene, Terpinolene, γ-Terpinene, l-β-Pinene, and 3-Thujene. Additionally, 115 nonvolatile compounds were tentatively identified using ultraperformance liquid chromatography-Q-Exactive Orbitrap tandem mass spectrometry (UPLC-Q-Exactive Orbitrap-MS). C. sinensis contained fewer compounds than did C. reticulata. Pterostilbene was detected in all tangerines but not in mandarins and hybrids, suggesting its potential as a marker compound for differentiating tangerines from other C. reticulata. Lastly, a high-performance liquid chromatography-photodiode array (HPLC-PDA) was used to quantify 9 major nonvolatile components. Heat map and principal component analysis showed that the contents of tangerines differed from other cultivars (sweet oranges, mandarins, and hybrids). It may be caused by the higher content of synephrine, nobiletin, tangeretin, and 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone in tangerines. The study may obtain information for the application of different types of C. reticulata (tangerines, mandarins, or hybrids) and C. sinensis peels, thereby promoting their recycling.
Collapse
Affiliation(s)
- Ziyang Song
- The
Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial
Key Laboratory of Molecular Target & Clinical Pharmacology, the
NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiepei Xu
- The
Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial
Key Laboratory of Molecular Target & Clinical Pharmacology, the
NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jingyuan Tian
- Scientific
Research Center, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinji Deng
- The
Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial
Key Laboratory of Molecular Target & Clinical Pharmacology, the
NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaojing Deng
- The
Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial
Key Laboratory of Molecular Target & Clinical Pharmacology, the
NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Mengdie Peng
- The
Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial
Key Laboratory of Molecular Target & Clinical Pharmacology, the
NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenhui Luo
- Guangdong
Yifang Pharmaceutical Co., Ltd., Foshan 528244, China
| | - Minyan Wei
- The
Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial
Key Laboratory of Molecular Target & Clinical Pharmacology, the
NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongmei Li
- The
Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial
Key Laboratory of Molecular Target & Clinical Pharmacology, the
NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Guodong Zheng
- The
Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial
Key Laboratory of Molecular Target & Clinical Pharmacology, the
NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
2
|
Li J, Xu Z, Gu J. UGT1A1 and UGT1A9 Are Responsible for Phase II Metabolism of Tectorigenin and Irigenin In Vitro. Molecules 2022; 27:molecules27134104. [PMID: 35807350 PMCID: PMC9268515 DOI: 10.3390/molecules27134104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Tectorigenin and irigenin are biologically active isoflavones of Belamcanda chinensis (L.) DC. Previous studies indicated that both compounds could be metabolized in vivo; however, the kinetic parameters of enzymes involved in the metabolization of tectorigenin and irigenin have not been identified. The aim of this study was to investigate UGTs involved in the glucuronidation of tectorigenin and irigenin and determine enzyme kinetic parameters using pooled human liver microsomes (HLMs) and recombinant UGTs. Glucuronides of tectorigenin and irigenin were identified using high-performance liquid chromatography (HPLC) coupled with mass spectrometry and quantified by HPLC using a response factor method. The results showed that tectorigenin and irigenin were modified by glucuronidation in HLMs. One metabolite of tectorigenin (M) and two metabolites of irigenin (M1 and M2) were detected. Chemical inhibition and recombinant enzyme experiments revealed that several enzymes could catalyze tectorigenin and irigenin glucuronidation. Among them, UGT1A1 and UGT1A9 were the primary enzymes for both tectorigenin and irigenin; however, the former mostly produced irigenin glucuronide M1, while the latter mostly produced irigenin glucuronide M2. These findings suggest that UGT1A1 and UGT1A9 were the primary isoforms metabolizing tectorigenin and irigenin in HLMs, which could be involved in drug–drug interactions and, therefore, should be monitored in clinical practice.
Collapse
Affiliation(s)
- Ji Li
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China;
| | - Zhangyao Xu
- Department of Pharmacy, Eye and ENT Hospital, Fudan University, Shanghai 200031, China;
| | - Jifeng Gu
- Department of Pharmacy, Eye and ENT Hospital, Fudan University, Shanghai 200031, China;
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200031, China
- Correspondence:
| |
Collapse
|
3
|
Patel DK. Medicinal Importance, Pharmacological Activities and Analytical Aspects of an Isoflavone Glycoside Tectoridin. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1570193x19666220411133129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Polyphenols are a group of plant secondary metabolites that are produced in plants as a protective system against oxidative stress, UV radiation, pathogens and predator’s attack. Flavonoids are major class of plant phenolics found to be present in fruits, vegetables, tea and red wine. Tectoridin also called 40,5,7-thrihydroxy-6-methoxyisoflavone-7-Ob-D-glucopyranoside is an isoflavone glycoside found to be present in the flower of Porites lobata.
Methods:
Present work focused on the biological importance, therapeutic potential and pharmacological activities of tectoridin in medicine. Numerous scientific data has been collected from different literature databases such as Google Scholar, Science Direct, PubMed and Scopus in order to know the health beneficial potential of tectoridin. Pharmacological data have been analyzed in the present work to know the biological effectiveness of tectoridin against human disorders. Analytical data of tectoridin have been collected and analyzed in the present work in order to know the importance of modern analytical method in the isolation, separation and identification of tectoridin.
Results:
Scientific data analysis revealed the biological importance and therapeutic benefit of tectoridin in medicine, signifying the therapeutic potential of tectoridin in the healthcare systems. Biological activities of tectoridin are mainly due to its anti-inflammatory, anti-platelet, anti-angiogenic, hepatoprotective, anti-tumor, estrogenic, antioxidant and hypoglycemic activity. However effectiveness of tectoridin against rat lens aldose reductase, nitric oxide, skeletal and cardiac muscle sarcoplasmic reticulum and enzymes have been also presented in this work. Analytical data signified the importance of modern analytical techniques for the separation, identification and isolation of tectoridin.
Conclusion:
Present work signified the biological importance and therapeutic benefit of tectoridin in the medicine and other allied health sectors.
Collapse
Affiliation(s)
- Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| |
Collapse
|