1
|
Neaz S, Alam MM, Imran AB. Advancements in cyclodextrin-based controlled drug delivery: Insights into pharmacokinetic and pharmacodynamic profiles. Heliyon 2024; 10:e39917. [PMID: 39553547 PMCID: PMC11567044 DOI: 10.1016/j.heliyon.2024.e39917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
This article discusses and summarizes some fascinating outcomes and applications of cyclodextrins (CDs) and their derivatives in drug delivery. These applications include the administration of protein, peptide medications, and gene delivery. Several innovative drug delivery systems, including NPs, microspheres, microcapsules, and liposomes, are designed with the help of CD, which is highlighted in this article. The use of these compounds as excipients in medicine formulation is reviewed, in addition to their well-known effects on drug solubility and dissolution, as well as their bioavailability, safety, and stability. Furthermore, the article focuses on many factors that influence the development of inclusion complexes, as having this information is necessary to manage these diverse materials effectively. An overview of the commercial availability, regulatory status, and patent status of CDs for pharmaceutical formulation is also presented. Due to the fact that CDs can discover new uses in drug delivery consistently, it is predicted that they will solve a wide range of issues related to the distribution of a variety of unique medications through various delivery channels.
Collapse
Affiliation(s)
- Sharif Neaz
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Md Mahbub Alam
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| |
Collapse
|
2
|
Wu X, Cheng D, Lu Y, Rong R, Kong Y, Wang X, Niu B. A liquid crystal in situ gel based on rotigotine for the treatment of Parkinson's disease. Drug Deliv Transl Res 2024; 14:1048-1062. [PMID: 37875660 DOI: 10.1007/s13346-023-01449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
One of the most common neurodegenerative illnesses is Parkinson's disease (PD). Rotigotine (RTG) is a dopamine agonist that exerts anti-Parkinsonian effects through dopamine receptor agonism to improve motor symptoms and overall performance in PD patients. In this study, an in situ liquid crystal gel called rotigotine-gel (RTG-gel) was developed using soya phosphatidyl choline (SPC) and glycerol dioleate (GDO) to provide long-acting slow-release benefits of rotigotine while minimizing side effects. This study prepared the RTG-gel precursor solution using SPC, GDO, and ethanol (in the ratio of 54:36:10, w/w/w). The internal structures of the gel were confirmed by crossed-polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). The rheological properties of the RTG-gel precursor solution indicate a favorable combination of low viscosity and excellent flowability. The gel that produced during water absorption was also highly viscous and structurally stable, which helped to maintain the drug delayed release at the injection site. In vitro release assays showed that the in vitro release of RTG-gel followed Ritger-Peppas. The RTG-gel precursor solution was administered by subcutaneous injection, and the results of in vivo pharmacokinetic tests in SD rats showed that the plasma elimination half-life (t1/2) was 59.28 ± 16.08 h; the time to peak blood concentration (Tmax) was 12.00 ± 10.32 h, and the peak concentration (Cmax) was 29.9 ± 10.10 ng/mL. The blood concentration remained above 0.1 ng/mL for 20 days after administration and was still detectable after 31 days of administration, and the bioavailability of RTG can reach 72.59%. The results of in vitro solvent exchange tests showed that the RTG-gel precursor solution undergoes rapid exchange upon contact with PBS, and the diffusion of ethanol can reach 48.1% within 60 min and 80% within 8 h. The results of cytotoxicity test showed 89.27 ± 4.32% cell survival after administration of the drug using RTG-gel. The results of tissue extraction at the administration site showed that healing of the injection site without redness and hemorrhage could be observed after 14 days of injection. The results of tissue section of the administered site showed that the inflammatory cells decreased and granulation tissue appeared after 14 days of administration, and there was basically no inflammatory cell infiltration after 35 days of administration, and the inflammatory reaction was basically eliminated. It shows that RTG-gel has some irritation to the injection site, but it can be recovered by itself in the later stage, and it has good biocompatibility. In summary, RTG-gel might be a potential RTG extended-release formulation for treating PD.
Collapse
Affiliation(s)
- Xiaxia Wu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, Shandong, China
- School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China
| | - Dongfang Cheng
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, Shandong, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China.
| | - Yue Lu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, Shandong, China
- School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China
| | - Rong Rong
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, Shandong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China
| | - Ying Kong
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, Shandong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China
| | - Xiuzhi Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China
| | - Baohua Niu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, Shandong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China
| |
Collapse
|
3
|
Rezaeian Shiadeh SN, Hadizadeh F, Khodaverdi E, Gorji Valokola M, Rakhshani S, Kamali H, Nokhodchi A. Injectable In-Situ Forming Depot Based on PLGA and PLGA-PEG-PLGA for Sustained-Release of Risperidone: In Vitro Evaluation and Pharmacokinetics in Rabbits. Pharmaceutics 2023; 15:pharmaceutics15041229. [PMID: 37111714 PMCID: PMC10143068 DOI: 10.3390/pharmaceutics15041229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
In the current research, novel drug delivery systems based on in situ forming gel (ISFG) (PLGA-PEG-PLGA) and in situ forming implant (ISFI) (PLGA) were developed for one-month risperidone delivery. In vitro release evaluation, pharmacokinetics, and histopathology studies of ISFI, ISFG, and Risperdal CONSTA® were compared in rabbits. Formulation containing 50% (w/w %) of PLGA-PEG-PLGA triblock revealed sustained release for about one month. Scanning electron microscopy (SEM) showed a porous structure for ISFI, while a structure with fewer pores was observed in the triblock. Cell viability in ISFG formulation in the first days was more than ISFI due to the gradual release of NMP to the release medium. Pharmacokinetic data displayed that optimal PLGA-PEG-PLGA creates a consistent serum level in vitro and in vivo through 30 days, and histopathology results revealed nearly slight to moderate pathological signs in the rabbit's organs. The shelf life of the accelerated stability test didn't affect the results of the release rate test and demonstrated stability in 24 months. This research confirms the better potential of the ISFG system compared with ISFI and Risperdal CONSTA®, which would increase patients' compliance and avoid problems of further oral therapy.
Collapse
Affiliation(s)
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948974, Iran
| | - Elham Khodaverdi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948974, Iran
| | - Mahmoud Gorji Valokola
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948974, Iran
| | - Saleh Rakhshani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948974, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948974, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| |
Collapse
|
4
|
Kamali H, Karimi M, Abbaspour M, Nadim A, Hadizadeh F, Khodaverdi E, Eisvand F. Comparison of lipid liquid crystal formulation and Vivitrol® for sustained release of Naltrexone: In vitro evaluation and pharmacokinetics in rats. Int J Pharm 2021; 611:121275. [PMID: 34748809 DOI: 10.1016/j.ijpharm.2021.121275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022]
Abstract
Camurus' FluidCrystal® injection depot is a lipid liquid crystal (LLC) phase formation-based method, comprising of glycerol dioleate (GDO) and soy phosphatidylcholine (SPC), together with minute quantities of N-methyl-2-pyrrolidone solvent (NMP). The present study aimed to develop a method for LLC using sorbitan monooleate (LLC-SMO) instead of GDO to prepare a one-month sustained-release formulation of naltrexone (NTX) that is applied for the treatment of autism and treating alcohol dependence. The optical characteristics of the LLC were assessed by polarizing light microscopy (PLM) to reveal the presence of lamellar, hexagonal, and cubic mesophases. Furthermore, in vitro release of NTX and NMP, degradation, pharmacokinetics, and histopathology of LLC-GDO and LLC-SMO in rats were evaluated and compared to those of Vivitrol®. The PLM images revealed that the structure of LLC-SMO is hexagonal, similar to LLC-GDO. The in vitro release of NTX and its pharmacokinetic results in rats indicted that the LLC-SMO system is more uniform than LLC-GDO and Vivitrol® during 35 days. Histopathological results of LLC-GDO and LLC-SMO confirmed the biocompatibility of our LLC delivery systems. Taken together these data demonstrate that the LLC-SMO-based method, was efficient enough to sustain the release of NTX in vitro and in vivo, confirming the biocompatible nature of this delivery system.
Collapse
Affiliation(s)
- Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Karimi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Abbaspour
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Nadim
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Khodaverdi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Yang S, Hu M, Liu W, Hou N, Yin K, Shen C, Shang Q. Fabrication of PLGA in situ forming implants and study on their correlation of in vitro release profiles with in vivo performances. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:994-1008. [PMID: 33583329 DOI: 10.1080/09205063.2021.1889857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, a novel PLGA in situ forming implants (ISFIs) were fabricated and methods for testing the in vitro release profiles were also developed. The correlations between in vitro release profiles and in vivo performances (in vitro-in vivo correlation, IVIVC) were also studied. PLGA with different molecular weights were selected as the polymeric matrix. Biocompatible N-methy1-2-pyrrolidone (NMP) or glyceryl triacetate (GTA) were used as the solvents with the ratios of NMP/GTA from 60/40 (vol/vol) to 20/80 (vol/vol). Eprinomectin (EPR) was chosen as the model therapeutic. In vitro release profiles of the EPR-loaded PLGA ISFIs were investigated using various methods (i.e. 'tubule' sample-and-separate and dialysis method). Sprague-Dawley rats were used to study the in vivo pharmacokinetics of EPR-loaded PLGA ISFIs. The release data obtained via 'tubule' sample-separate method had a good IVIVC (Level A, R2 > 0.99). These results showed that the 'tubule' sample-separate method was capable of discriminating the EPR-loaded ISFIs which were equivalent in formulation composition with manufacturing differences. Meanwhile, this method could be used to predict the in vivo performances of ISFIs in the investigated animal model.
Collapse
Affiliation(s)
- Song Yang
- Chemical and Pharmaceutical Engineering Institute, Hebei University of Science and Technology, Hebei, China
| | - Mengya Hu
- Chemical and Pharmaceutical Engineering Institute, Hebei University of Science and Technology, Hebei, China
| | - Wenqing Liu
- Chemical and Pharmaceutical Engineering Institute, Hebei University of Science and Technology, Hebei, China
| | - Nuohan Hou
- Chemical and Pharmaceutical Engineering Institute, Hebei University of Science and Technology, Hebei, China
| | - Kaidi Yin
- Chemical and Pharmaceutical Engineering Institute, Hebei University of Science and Technology, Hebei, China
| | - Chen Shen
- Chemical and Pharmaceutical Engineering Institute, Hebei University of Science and Technology, Hebei, China
| | - Qing Shang
- Chemical and Pharmaceutical Engineering Institute, Hebei University of Science and Technology, Hebei, China
| |
Collapse
|
6
|
Khodaverdi E, Eisvand F, Nezami MS, Shiadeh SNR, Kamali H, Hadizadeh F. Injectable In-Situ Forming Depot of Doxycycline Hyclate/α-Cyclodextrin Complex Using PLGA for Periodontitis Treatment: Preparation, Characterization, and In-Vitro Evaluation. Curr Drug Deliv 2020; 18:729-740. [PMID: 33155908 DOI: 10.2174/1567201817999201103195104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Doxycycline (DOX) is used in treating a bacterial infection, especially for periodontitis treatment. OBJECTIVE To reduce irritation of DOX for subgingival administration and increase the chemical stability and against enzymatic, the complex of α-cyclodextrin with DOX was prepared and loaded into injectable in situ forming implant based on PLGA. METHODS FTIR, molecular docking studies, X-ray diffraction, and differential scanning calorimetry was performed to characterize the DOX/α-cyclodextrin complex. Finally, the in-vitro drug release and modeling, morphological properties, and cellular cytotoxic effects were also evaluated. RESULTS The stability of DOX was improved with complex than pure DOX. The main advantage of the complex is the almost complete release (96.31 ± 2.56 %) of the drug within 14 days of the implant, whereas in the formulation containing the pure DOX and the physical mixture the DOX with α-cyclodextrin release is reached to 70.18 ± 3.61 % and 77.03 ± 3.56 %, respectively. This trend is due to elevate of DOX stability in the DOX/ α-cyclodextrin complex form within PLGA implant that confirmed by the results of stability. CONCLUSION Our results were indicative that the formulation containing DOX/α-cyclodextrin complex was biocompatible and sustained-release with minimum initial burst release.
Collapse
Affiliation(s)
- Elham Khodaverdi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Sina Nezami
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Nesa Rezaeian Shiadeh
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Optimization and in Vitro Evaluation of Injectable Sustained-Release of Levothyroxine Using PLGA-PEG-PLGA. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09480-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Purpose
In situ-forming gels (semi-solid state) (ISFGs) are widely used as sustained drug delivery, but they show a high burst release as well. The purpose of the current study is to make triblock that can make a quick gel on injection with a minimum burst release.
Methods
In this study, to control the release of levothyroxine from ISFG, PLGA-PEG-PLGA (triblock) polymer was used. The melting method was employed to synthesize the triblock via ring-opening polymerization (ROP). Different weight percentages of triblock in the formulation were investigated to reach the minimum initial burst release of levothyroxine from ISFGs. Furthermore, the results of the in-situ forming implant (solid-state) (ISFI) of levothyroxine prepared from PLGA 504 H polymers were compared with ISFG.
Results
The melting method employed in this study showed a successful ROP of the triblock. As the % triblock concentration was increased from 30 to 50%, the initial burst release decreased significantly. The initial burst release levothyroxine from ISFG (6.52 ± 0.30%) was much lower than the amount of levothyroxine released from ISFI (14.15 ± 0.79%). No cytotoxicity was observed for the sustained-release formulation containing ISFG 50% according to the MTT assay.
Conclusion
The results indicated that this formulation was safe to be administered subcutaneously. As the synthesized triblock has thermosensitive properties, and also has the hydrogen bonding between the N-methyl pyrrolidone molecules and PEG, therefore, these properties make ISFG formulation to have a smaller initial burst release compared to ISFI formulation.
Collapse
|
8
|
Kamali H, Khodaverdi E, Hadizadeh F, Mohajeri SA, Nazari A, Jafarian AH. Comparison of in-situ forming composite using PLGA-PEG-PLGA with in-situ forming implant using PLGA: In-vitro, ex-vivo, and in-vivo evaluation of naltrexone release. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
In-vitro, ex-vivo, and in-vivo evaluation of buprenorphine HCl release from an in situ forming gel of PLGA-PEG-PLGA using N‑methyl‑2‑pyrrolidone as solvent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:561-575. [DOI: 10.1016/j.msec.2018.11.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 10/23/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023]
|
10
|
Kamali H, Khodaverdi E, Hadizadeh F, Mohajeri SA, Kamali Y, Jafarian AH. In-vitro, ex-vivo, and in-vivo release evaluation of in situ forming buprenorphine implants using mixture of PLGA copolymers and additives. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1525541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Khodaverdi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Younes Kamali
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amir Hossein Jafarian
- Ghaem Hospital, Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Kamali H, Khodaverdi E, Hadizadeh F, Yazdian-Robati R, Haghbin A, Zohuri G. An in-situ forming implant formulation of naltrexone with minimum initial burst release using mixture of PLGA copolymers and ethyl heptanoate as an additive: In-vitro, ex-vivo, and in-vivo release evaluation. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Solvent removal precipitation based in situ forming implant for controlled drug delivery in periodontitis. J Control Release 2017; 251:75-81. [PMID: 28242417 DOI: 10.1016/j.jconrel.2017.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/24/2017] [Accepted: 02/19/2017] [Indexed: 01/22/2023]
|
13
|
Rahimi M, Mobedi H, Behnamghader A. In situ-forming PLGA implants loaded with leuprolide acetate/β-cyclodextrin complexes: mathematical modelling and degradation. J Microencapsul 2016; 33:355-64. [DOI: 10.1080/02652048.2016.1194905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Toomari Y, Namazi H. Synthesis of supramolecular biodendrimeric β-CD-(spacer-β-CD)21viaclick reaction and evaluation of its application as anticancer drug delivery agent. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2015.1129960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|