1
|
Hiwrale A, Bharati S, Pingale P, Rajput A. Nanofibers: A current era in drug delivery system. Heliyon 2023; 9:e18917. [PMID: 37674834 PMCID: PMC10477438 DOI: 10.1016/j.heliyon.2023.e18917] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Nanofibers have a large area of surface variable 3D topography, porosity, and adaptable surface functions. Several researchers are researching nanofiber technology as a potential solution to the current problems in several fields. It manages cardiovascular disorders, infectious diseases, gastrointestinal tract-associated diseases, neurodegenerative diseases, pain treatment, contraception, and wound healing. The nanofibers are fabricated using various fabrication techniques, such as electrospinning, phase separation, physical Fabrication, and chemical fabrication. Depending on their intended use, nanofibers are manufactured using a variety of polymers. It comprises natural polymers, semi-synthetic polymers, synthetic polymers, metals, metal oxides, ceramics, carbon, nonporous materials, mesoporous materials, hollow structures, core-shell structures, biocomponents, and multi-component materials. Nanofiber composites are a good alternative for targeted gene delivery, protein and peptide delivery, and growth factor delivery. Thus, nanofibers have huge potential in drug delivery, which enables them to be used for various applications and can revolutionize these therapeutic areas. This review systematically studied nanofibers' history, advantages, disadvantages, types, and polymers used in nanofiber technology. Further, polymers and their types used in the preparation of nanofibers were summarised. Mainly review article focuses on the fabrication method, i.e., electrospinning and its types. Finally, the article discussed the applications and recent advancements of nanofabrication technology.
Collapse
Affiliation(s)
- Abhijeet Hiwrale
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, 411038, Maharashtra, India
| | - Swati Bharati
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, 411038, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, 411038, Maharashtra, India
| |
Collapse
|
2
|
Smart nanofibres for specific and ultrasensitive nanobiosensors and drug delivery systems. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biosensors are dynamically developing analytical devices for the detection of substrates or other bioactive substances. They can be used for quick gas or liquid analyses and the construction of sensitive detection systems. This review highlights the advances and development of biosensors suitable for human and veterinary medicine and, namely, a novel contribution of nanotechnology for ultrasensitive diagnosis and personalized medicine. The synergic effect of nanotechnology and biosensors opens a new dimension for effective treatment and disease detection at their early stages.
Collapse
|
3
|
Effects of Platelet-Rich Fibrin/Collagen Membrane on Sciatic Nerve Regeneration. J Craniofac Surg 2021; 32:794-798. [PMID: 33705038 DOI: 10.1097/scs.0000000000007003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Alternative treatment approaches to improve the regeneration ability of damaged peripheral nerves are currently under investigation. The aim of the current study was to evaluate the effects of leucocyte/platelet-rich fibrin (L-PRF) with or without a collagen membrane as a supporter on crushed sciatic nerve healing in a rat model. Recovery of motor function and electrophysiologic measurements were evaluated at 4 weeks postoperatively. The whole number of myelinated axons, peripheral nerve axon density, average nerve fiber diameter (μm), and G-ratio were analyzed and compered among the groups. Functional, electrophysiological, and histological evaluations showed no significant difference among the groups with the exception of the L-PRF with collagen membrane groups that showed relatively positive effects on the functional and histological nerve recovery. In addition, the collagen membrane with L-PRF can be effect in nerve regeneration.
Collapse
|
4
|
Aavani F, Biazar E, Heshmatipour Z, Arabameri N, Kamalvand M, Nazbar A. Applications of bacteria and their derived biomaterials for repair and tissue regeneration. Regen Med 2021; 16:581-605. [PMID: 34030458 DOI: 10.2217/rme-2020-0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microorganisms such as bacteria and their derived biopolymers can be used in biomaterials and tissue regeneration. Various methods have been applied to regenerate damaged tissues, but using probiotics and biomaterials derived from bacteria with improved economic-production efficiency and highly applicable properties can be a new solution in tissue regeneration. Bacteria can synthesize numerous types of biopolymers. These biopolymers possess many desirable properties such as biocompatibility and biodegradability, making them good candidates for tissue regeneration. Here, we reviewed different types of bacterial-derived biopolymers and highlight their applications for tissue regeneration.
Collapse
Affiliation(s)
- Farzaneh Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), 15916-34311 Tehran, Iran
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Nasibeh Arabameri
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Abolfazl Nazbar
- National Cell Bank, Pasteur Institute of Iran, 13169-43551 Tehran, Iran
| |
Collapse
|
5
|
Pourjabbar B, Biazar E, Heidari Keshel S, Ahani-Nahayati M, Baradaran-Rafii A, Roozafzoon R, Alemzadeh-Ansari MH. Bio-polymeric hydrogels for regeneration of corneal epithelial tissue*. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1909586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Alemzadeh-Ansari
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Biazar E, Kamalvand M, Avani F. Recent advances in surface modification of biopolymeric nanofibrous scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1857383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farzaneh Avani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
7
|
Hayder J, Chaouch MA, Amira N, Ben Mansour M, Majdoub H, Chaubet F, Maaroufi RM. Co-immobilization of chitosan and dermatan sulfate from Raja montagui skin on polyethylene terephthalate surfaces: Characterization and antibiofilm activity. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1320664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jihane Hayder
- University of Monastir, Laboratory of Genetics, Biodiversity and Bioresources Valorization (LR11ES41), High Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Mohamed Aymen Chaouch
- University of Monastir, Laboratory of interfaces and advanced materials (LIMA), Faculty of Sciences of Monastir, Monastir, Tunisia
| | - Noumi Amira
- University of Monastir, Laboratory of Contagious Diseases and Biologically Active Substances (LR99ES27), Faculty of Pharmacy, Monastir, Tunisia
| | - Mohamed Ben Mansour
- Galilee Institute, University of Paris 13, Paris-Sorbonne University, Laboratory for Vascular Translational Science, Villetaneuse, France
| | - Hatem Majdoub
- University of Monastir, Laboratory of interfaces and advanced materials (LIMA), Faculty of Sciences of Monastir, Monastir, Tunisia
| | - Frédéric Chaubet
- Galilee Institute, University of Paris 13, Paris-Sorbonne University, Laboratory for Vascular Translational Science, Villetaneuse, France
| | - Raoui Mounir Maaroufi
- University of Monastir, Laboratory of Genetics, Biodiversity and Bioresources Valorization (LR11ES41), High Institute of Biotechnology of Monastir, Monastir, Tunisia
| |
Collapse
|
8
|
Template-Assisted Preparation of Micrometric Suspended Membrane Lattices of Photoluminescent and Non-Photoluminescent Polymers by Capillarity-Driven Solvent Evaporation: Application to Microtagging. Sci Rep 2017; 7:8351. [PMID: 28827776 PMCID: PMC5566329 DOI: 10.1038/s41598-017-08278-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/10/2017] [Indexed: 11/21/2022] Open
Abstract
In this work, the bottom-up template-assisted preparation of high-density lattices (up to 11 · 106 membranes/cm2) of suspended polymer membranes with micrometric size (in the order of few μm2) and sub-micrometric thickness (in the order of hundreds of nm) is demonstrated for both photoluminescent and non-photoluminescent polymers by capillarity-driven solvent evaporation. Solvent evaporation of low concentration polymer solutions drop-cast on an array of open-ended micropipes is shown to lead to polymer membrane formation at the inlet of the micropipes thanks to capillarity. The method is proven to be robust with high-yield (>98%) over large areas (1 cm2) and of general validity for both conjugated and non-conjugated polymers, e.g. poly(9,9-di-n-octylfluorene-alt-benzothiadiazole (F8BT), poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV), polystyrene (PS), thus breaking a new ground on the controlled preparation of polymer micro and nanostructures. Angle dependence and thermal stability of photoluminescence emission arising from F8BT membrane lattices was thorough investigated, highlighting a non-Lambertian photoluminescence emission of membrane lattices with respect to F8BT films. The method is eventually successfully applied to the preparation of both photoluminescent and non-photoluminescent micro Quick Response (μQR) codes using different polymers, i.e. F8BT, MDMO-PPV, PS, thus providing micrometric-sized taggants suitable for anti-counterfeiting applications.
Collapse
|