1
|
Selvaraj S, Perera M, Yapa P, Munaweera I, Perera IC, Senapathi T, Weerasinghe L. In vitro analysis of XLAsp-P2 peptide loaded cellulose acetate nanofiber for wound healing. J Pharm Sci 2025; 114:911-922. [PMID: 39542360 DOI: 10.1016/j.xphs.2024.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Recently, nanofiber-based wound dressings are currently a viable strategy to expedite the healing of wounds by providing a suitable microenvironment for tissue growth with active ingredients. This research study subjects the development of electrospun cellulose acetate (CA) nanofibers loaded with the XLAsp-P2, an antimicrobial peptide (AMP) that holds great potential for enhanced wound healing as a therapeutic agent. The synthesized XLAsp-P2-loaded CA nanofibers were fabricated via three loading percentages, 0.1 %, 0.2 %, and 0.3 % w/w, and characterized and evaluated their antimicrobial potential with MTT assay and Agar overlay methods as an alternative strategy. FT-IR analysis confirmed the compatibility of the peptide-loaded CA nanocomposite, showing distinct peaks corresponding to the constituent materials. Scanning electron microscopy (SEM) analysis was employed to characterize the morphology of electrospun peptide CA nanocomposites and illustrate the fiber's size at the nanoscale. The in vitro release study during the 24 hr, 87 % of the peptide was released which was approximately 5.2 mg; which was closer matched to the square root model of Higuchi at room temperature. MTT assay presented sensitive results towards Gram-positive bacteria compared to Gram Negative bacteria; which corresponded to the inhibition zones of the Agar overlay method proving that Escherichia coli (ATCC 25922) 17.66 ± 0.38 mm and Pseudomonas aeruginosa (ATCC 27853) 17.44 ± 0.38 mm exhibited moderate susceptibility, while Staphylococcus aureus (ATCC 25923)19.89 ± 0.69 mm and Bacillus cereus (ATCC 11778) 23.00 ± 0.33 mm showed promising responses. Collectively, The study's findings indicate that the XLAsp-P2 incorporated CA mat possesses an opportunity to function as an efficient platform for delivering therapeutic peptides.
Collapse
Affiliation(s)
- Saranya Selvaraj
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Monali Perera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Piumika Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Inoka C Perera
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Tharindu Senapathi
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.
| |
Collapse
|
2
|
Ndlovu SP, Motaung KSCM, Adeyemi SA, Ubanako P, Ngema L, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Sodium alginate-based nanofibers loaded with Capparis Sepiaria plant extract for wound healing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2380-2401. [PMID: 39037962 DOI: 10.1080/09205063.2024.2381375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Burn wounds are associated with infections, drug resistance, allergic reactions, odour, bleeding, excess exudates, and scars, requiring prolonged hospital stay. It is crucial to develop wound dressings that can effectively combat allergic reactions and drug resistance, inhibit infections, and absorb excess exudates to accelerate wound healing. To overcome the above-mentioned problems associated with burn wounds, SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers incorporated with Capparis sepiaria plant extract were prepared using an electrospinning technique. Fourier-transform infrared spectroscopy confirmed the successful incorporation of the extract into the nanofibers without any interaction between the extract and the polymers. The nanofibers displayed porous morphology and a rough surface suitable for cellular adhesion and proliferation. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers demonstrated significant antibacterial effects against wound infection-associated bacterial strains: Pseudomonas aeruginosa, Enterococcus faecalis, Mycobaterium smegmatis, Escherichia coli, Enterobacter cloacae, Proteus vulgaris, and Staphylococcus aureus. Cytocompatibility studies using HaCaT cells revealed the non-toxicity of the nanofibers. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers exhibited hemostatic properties, resulting from the synergistic effect of the plant extract and polymers. The in vitro scratch wound healing assay showed that the SA/PVA/Capparis sepiaria nanofiber wound-healing capability is more than the plant extract and a commercially available wound dressing. The wound-healing potential of SA/PVA/Capparis sepiaria nanofiber is attributed to the synergistic effect of the phytochemicals present in the extract, their porosity, and the ECM-mimicking structure of the nanofibers. The findings suggest that the electrospun nanofibers loaded with Capparis sepiaria extract are promising wound dressings that should be explored for burn wounds.
Collapse
Affiliation(s)
- Sindi P Ndlovu
- Department of Chemistry, University of Fort Hare, Alice, Eastern Cape, South Africa
| | | | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lindokuhle Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thierry Y Fonkui
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Derek T Ndinteh
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
3
|
Liu X, Xu H, Zhang M, Yu DG. Electrospun Medicated Nanofibers for Wound Healing: Review. MEMBRANES 2021; 11:770. [PMID: 34677536 PMCID: PMC8537333 DOI: 10.3390/membranes11100770] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022]
Abstract
With the increasing demand for wound care and treatment worldwide, traditional dressings have been unable to meet the needs of the existing market due to their limited antibacterial properties and other defects. Electrospinning technology has attracted more and more researchers' attention as a simple and versatile manufacturing method. The electrospun nanofiber membrane has a unique structure and biological function similar to the extracellular matrix (ECM), and is considered an advanced wound dressing. They have significant potential in encapsulating and delivering active substances that promote wound healing. This article first discusses the common types of wound dressing, and then summarizes the development of electrospun fiber preparation technology. Finally, the polymers and common biologically active substances used in electrospinning wound dressings are summarized, and portable electrospinning equipment is also discussed. Additionally, future research needs are put forward.
Collapse
Affiliation(s)
- Xinkuan Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Haixia Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Mingxin Zhang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
4
|
Kamoun EA, Loutfy SA, Hussein Y, Kenawy ERS. Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. Int J Biol Macromol 2021; 187:755-768. [PMID: 34358597 DOI: 10.1016/j.ijbiomac.2021.08.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 02/08/2023]
Abstract
Among several types of carbohydrate polymers blend PVA hydrogel membranes used for biomedical applications in particular wound dressings; electrospun nanofibrous membranes have gained increased interest because of their extraordinary features e.g. huge surface area to volume ratio, high porosity, adequate permeability, excellent wound-exudates absorption capacity, architecture similarity with skin ECM and sustained release-profile over long time. In this study, modern perspectives of synthesized/developed electrospun nanofibrous hydrogel membranes based popular carbohydrate polymers blend PVA which recently have been employed for versatile biomedical applications particularly wound dressings, were discussed intensively and compared in detail with traditional fabricated membranes based films, as well. Clinically relevant and advantages of electrospun nanofibrous membranes were discussed in terms of their biocompatibility and easily fabrication and functionalization in different biomedical applications.
Collapse
Affiliation(s)
- Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt.
| | - Samah A Loutfy
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Egypt
| | - Yasmein Hussein
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt
| | - El-Refaie S Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, University of Tanta, Tanta 31527, Egypt
| |
Collapse
|
5
|
Alven S, Khwaza V, Oyedeji OO, Aderibigbe BA. Polymer-Based Scaffolds Loaded with Aloe vera Extract for the Treatment of Wounds. Pharmaceutics 2021; 13:961. [PMID: 34206744 PMCID: PMC8309095 DOI: 10.3390/pharmaceutics13070961] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
The treatment of wounds is one challenging biomedical field due to delayed wound healing common in chronic wounds. Several factors delay wound healing, including microbial infections, malnutrition, underlying physiological conditions, etc. Most of the currently used wound dressing materials suffer from poor antimicrobial properties, poor biodegradability and biocompatibility, and weak mechanical performance. Plant extracts, such as Aloe vera, have attracted significant attention in wound management because of their interesting biological properties. Aloe vera is composed of essential constituents beneficial for the wound healing process, such as amino acids, vitamins C and E, and zinc. Aloe vera influences numerous factors that are involved in wound healing and stimulates accelerated healing. This review reports the therapeutic outcomes of aloe vera extract-loaded polymer-based scaffolds in wound management.
Collapse
Affiliation(s)
| | | | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (S.A.); (V.K.); (O.O.O.)
| |
Collapse
|
6
|
Batista H, Freitas JP, Abrunheiro A, Gonçalves T, Gil MH, Figueiredo M, Coimbra P. Electrospun composite fibers of PLA/PLGA blends and mesoporous silica nanoparticles for the controlled release of gentamicin sulfate. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1876053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Henrique Batista
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| | - João P. Freitas
- Department of Orthopaedics, CHUC, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexandra Abrunheiro
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria H. Gil
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| | - Margarida Figueiredo
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| | - Patrícia Coimbra
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Solaberrieta I, Jiménez A, Cacciotti I, Garrigós MC. Encapsulation of Bioactive Compounds from Aloe Vera Agrowastes in Electrospun Poly (Ethylene Oxide) Nanofibers. Polymers (Basel) 2020; 12:E1323. [PMID: 32531945 PMCID: PMC7361710 DOI: 10.3390/polym12061323] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Aloe Vera is an ancient medicinal plant especially known for its beneficial properties for human health, due to its bioactive compounds. In this study, nanofibers with antioxidant activity were successfully obtained by electrospinning technique with the addition of a natural Aloe Vera skin extract (AVE) (at 0, 5, 10 and 20 wt% loadings) in poly(ethylene oxide) (PEO) solutions. The successful incorporation of AVE into PEO was evidenced by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging (ABTS) and ferric reducing power (FRAP) assays. The incorporation of AVE introduced some changes in the PEO/AVE nanofibers morphology showing bimodal diameter distributions for AVE contents in the range 10-20 wt%. Some decrease in thermal stability with AVE addition, in terms of decomposition onset temperature, was also observed and it was more evident at high loading AVE contents (10 and 20 wt%). High encapsulation efficiencies of 92%, 76% and 105% according to DPPH, FRAP and ABTS assays, respectively, were obtained at 5 wt% AVE content, retaining AVE its antioxidant capacity in the PEO/AVE electrospun nanofibers. The results suggested that the obtained nanofibers could be promising materials for their application in active food packaging to decrease oxidation of packaged food during storage.
Collapse
Affiliation(s)
- Ignacio Solaberrieta
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain; (I.S.); (A.J.)
| | - Alfonso Jiménez
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain; (I.S.); (A.J.)
| | - Ilaria Cacciotti
- Department of Engineering, University of Rome “Niccolò Cusano”, INSTM RU, Via Don Carlo Gnocchi 3, 00166 Rome, Italy
| | - Maria Carmen Garrigós
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain; (I.S.); (A.J.)
| |
Collapse
|