1
|
Kou J, Li Y, Zhou C, Wang X, Ni J, Lin Y, Ge H, Zheng D, Chen G, Sun X, Tan Q. Electrospinning in promoting chronic wound healing: materials, process, and applications. Front Bioeng Biotechnol 2025; 13:1550553. [PMID: 40114848 PMCID: PMC11922904 DOI: 10.3389/fbioe.2025.1550553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
In the field of wound treatment, chronic wounds pose a significant burden on the medical system, affecting millions of patients annually. Current treatment methods often fall short in promoting effective wound healing, highlighting the need for innovative approaches. Electrospinning, a technique that has garnered increasing attention in recent years, shows promise in wound care due to its unique characteristics and advantages. Recent studies have explored the use of electrospun nanofibers in wound healing, demonstrating their efficacy in promoting cell growth and tissue regeneration. Researchers have investigated various materials for electrospinning, including polymers, ceramics, carbon nanotubes (CNTs), and metals. Hydrogel, as a biomaterial that has been widely studied in recent years, has the characteristics of a cell matrix. When combined with electrospinning, it can be used to develop wound dressings with multiple functions. This article is a review of the application of electrospinning technology in the field of wound treatment. It introduces the current research status in the areas of wound pathophysiology, electrospinning preparation technology, and dressing development, hoping to provide references and directions for future research.
Collapse
Affiliation(s)
- Jiaxi Kou
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yaodong Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Chen Zhou
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiyu Wang
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, China
| | - Jian Ni
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Huaqiang Ge
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Dongfeng Zheng
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Guopu Chen
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xitai Sun
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
2
|
Silva-López MS, Escobar-Barrios VA, Alcántara-Quintana LE. Electrospun Coaxial Polycaprolactone/Polyvinylpyrrolidone Fibers Containing Cisplatin: A Potential Local Chemotherapy Delivery System for Cervical Cancer Treatment. Polymers (Basel) 2025; 17:637. [PMID: 40076128 PMCID: PMC11902410 DOI: 10.3390/polym17050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cisplatin, a frequently used chemotherapeutic for the treatment of cervical cancer, causes adverse effects that limit its use. Treatment with local therapy that limits toxicity remains a challenge. The aim of this study was to develop a local intravaginal cisplatin delivery system of polycaprolactone/polyvinylpyrrolidone sheath/core fibers by coaxial electrospinning. Physicochemical properties, degradation rate, mucoadhesion, release profile, and in vitro biosafety assays were characterized. Microscopy images confirmed the coaxial nature of the fibers and showed continuous morphology and diameters of 3-9 µm. The combination of polymers improved their mechanical properties. The contact angle < 85° indicated a hydrophilic surface, which would allow its dissolution in the vaginal environment. The release profile showed a rapid initial release followed by a slow and sustained release over eight days. The degradation test showed ~50% dissolution of the fibers on day 10. The adhesion of the fibrous device to the vaginal wall lasted for more than 15 days, which was sufficient time to allow the release of cisplatin. The biosafety tests showed great cytocompatibility and no hemolysis. The characteristics of the developed system open the possibility of its application as a localized therapy against cervical cancer, reducing adverse effects and improving the quality of life of patients.
Collapse
Affiliation(s)
- Mariana Sarai Silva-López
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico;
| | - Vladimir Alonso Escobar-Barrios
- Advanced Materials Department, Institute for Scientific and Technological Research of San Luis Potosi A.C. Road to San Jose Dam, Lomas 4a Section, San Luis Potosí 78216, Mexico;
| | - Luz Eugenia Alcántara-Quintana
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico;
| |
Collapse
|
3
|
Zhang R, Chen X, Wang H, Sun J, Huang S, Zhang X, Long J. Study on Deposition of Coaxial Electrospinning Fibers by Coaxial Auxiliary Flow Field. Polymers (Basel) 2025; 17:396. [PMID: 39940598 PMCID: PMC11820004 DOI: 10.3390/polym17030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Gas-assisted coaxial electrospinning (GACES) is a simple and general method for the mass preparation of coaxial nanofiber membranes, which has great industrial potential. However, in the manufacturing process, due to the bending instability of the jet in the electric field and the pulling effect of the gas flow field, the deposition uniformity of the fiber is still a big problem. Through finite element simulation analysis of the flow field in the manufacturing process and the construction of the jet mechanics model after adding the flow field, the influence mechanism of coaxial auxiliary flow on the fiber deposition area and its uniformity was successfully revealed in this research. Finally, the deposition area and thickness uniformity of coaxial fibers are increased by 3 times (the deposition area: 19.63 cm2 → 78.50 cm2) and 2.34 times (the standard variance: 3 μm2 → 10 μm2) by gas-assisted coaxial electrospinning. At the same time, the coaxial auxiliary gas flow also reduces the coaxial fiber diameter by 36.9% (the average fiber diameter: 241 nm ± 5 nm → 152 nm ± 23 nm) and the distribution range by 66% (the standard variance: 1.5 × 102 nm2 → 51 nm2). This research provides a reliable idea and experimental basis for homogeneous preparation of coaxial nanofiber membranes.
Collapse
Affiliation(s)
- Rongguang Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Han Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianfeng Sun
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shize Huang
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanzhi Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiecai Long
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Rajabifar N, Rostami A, Afshar S, Mosallanezhad P, Zarrintaj P, Shahrousvand M, Nazockdast H. Wound Dressing with Electrospun Core-Shell Nanofibers: From Material Selection to Synthesis. Polymers (Basel) 2024; 16:2526. [PMID: 39274158 PMCID: PMC11398146 DOI: 10.3390/polym16172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Skin, the largest organ of the human body, accounts for protecting against external injuries and pathogens. Despite possessing inherent self-regeneration capabilities, the repair of skin lesions is a complex and time-consuming process yet vital to preserving its critical physiological functions. The dominant treatment involves the application of a dressing to protect the wound, mitigate the risk of infection, and decrease the likelihood of secondary injuries. Pursuing solutions for accelerating wound healing has resulted in groundbreaking advancements in materials science, from hydrogels and hydrocolloids to foams and micro-/nanofibers. Noting the convenience and flexibility in design, nanofibers merit a high surface-area-to-volume ratio, controlled release of therapeutics, mimicking of the extracellular matrix, and excellent mechanical properties. Core-shell nanofibers bring even further prospects to the realm of wound dressings upon separate compartments with independent functionality, adapted release profiles of bioactive agents, and better moisture management. In this review, we highlight core-shell nanofibers for wound dressing applications featuring a survey on common materials and synthesis methods. Our discussion embodies the wound healing process, optimal wound dressing characteristics, the current organic and inorganic material repertoire for multifunctional core-shell nanofibers, and common techniques to fabricate proper coaxial structures. We also provide an overview of antibacterial nanomaterials with an emphasis on their crystalline structures, properties, and functions. We conclude with an outlook for the potential offered by core-shell nanofibers toward a more advanced design for effective wound healing.
Collapse
Affiliation(s)
- Nariman Rajabifar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran
| | - Shahnoosh Afshar
- Department of Polymer Engineering, Islamic Azad University-Mahshahr Campus, Mahshahr P.O. Box 63511-41111, Iran
| | - Pezhman Mosallanezhad
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rasht P.O. Box 43841-119, Iran
| | - Hossein Nazockdast
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| |
Collapse
|
5
|
Suner SC, Oral A, Yildirim Y. Design of Poly(lactic) acid/gelatin core-shell bicomponent systems as a potential wound dressing material. J Mech Behav Biomed Mater 2024; 150:106255. [PMID: 38039772 DOI: 10.1016/j.jmbbm.2023.106255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
The electrospun core-shell nanofiber has great many advantages such as different types of solvents that can be used for changing flexibility, mechanical properties, or surface chemistry of fiber. Hydrophobic Poly(lactic) acid (PLA) and hydrophilic gelatin (Gel) were electrospun by various preparation conditions to design perfect bicomponent PLA:Gel nanofiber in a core-shell structure. Solvent types, the concentration of polymeric components, flow rate, and voltage of the electrospinning process were changed to optimization of nanofiber. According to the SEM images, the best nanofiber structure without beads was obtained at 0.4 ml/h flow rate of PLA solution and 1.2 ml/h flow rate of Gel solution at 45:55 (w:w %) weight ratio of PLA:Gel in trifluoroethanol solvent with a 10 kV voltage at 10 cm distance to the collector. From the TEM images, the existence of the core-shell structure had been proved which all prepared nanofibers with 2,2,2-Trifluoroethanol solvent. Furthermore, contact angle measurements showed a change in wettability when the Gel amount was increased. Therefore, the mildest synthesis conditions were determined for bicomponent PLA:Gel core-shell nanofibers as a potential wound dressing and dual drug carrier materials.
Collapse
Affiliation(s)
- Salih Can Suner
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Canakkale Onsekiz Mart University, Canakkale, Turkey; Canakkale Onsekiz Mart University Science and Technology Application and Research Laboratory, 17020, Canakkale, Turkey
| | - Ayhan Oral
- Department of Chemistry, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Yeliz Yildirim
- Department of Chemistry, Faculty of Sciences, Ege University, Izmir, Turkey; Center for Drug Research and Development and Pharmacokinetic Applications (ARGEFAR), Ege University, Izmir, Turkey.
| |
Collapse
|
6
|
Momeni P, Nourisefat M, Farzaneh A, Shahrousvand M, Abdi MH. The engineering, drug release, and in vitro evaluations of the PLLA/HPC/ Calendula Officinalis electrospun nanofibers optimized by Response Surface Methodology. Heliyon 2024; 10:e23218. [PMID: 38205286 PMCID: PMC10777380 DOI: 10.1016/j.heliyon.2023.e23218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
A system based on poly(l-lactic acid) (PLLA) and hydroxypropyl cellulose (HPC) was considered in this study to achieve electrospun mats with outstanding properties and applicability in biomedical engineering. A novel binary solvent system of chloroform/N,N-dimethylformamide (CF/DMF:70/30) was utilized to minimize the probable phase separation between the polymeric components. Moreover, Response Surface Methodology (RSM) was employed to model/optimize the process. Finally, to scrutinize the ability of the complex in terms of drug delivery, Calendula Officinalis (Marigold) extract was added to the solution of the optimal sample (Opt.PH), and then the set was electrospun (PHM). As a result, the presence of Marigold led to higher values of fiber diameter (262 ± 34 nm), pore size (483 ± 102 nm), and surface porosity (81.0 ± 7.3 %). As this drug could also prohibit the micro-scale phase separation, the PHM touched superior tensile strength and Young modulus of 11.3 ± 1.1 and 91.2 ± 4.2 MPa, respectively. Additionally, the cumulative release data demonstrated non-Fickian diffusion with the Korsmeyer-Peppas exponent and diffusion coefficient of n = 0.69 and D = 2.073 × 10-14 cm2/s, respectively. At the end stage, both the Opt.PH and PHM mats manifested satisfactory results regarding the hydrophilicity and cell viability/proliferation assessments, reflecting their high potential to be used in regenerative medicine applications.
Collapse
Affiliation(s)
- Pegah Momeni
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Maryam Nourisefat
- Department of polymer engineering and color technology, Amirkabir University of Technology, Tehran, Iran
| | - Arman Farzaneh
- Department of polymer engineering and color technology, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshahr, P.O. Box: 43841-119, Guilan, Iran
| | - Mohammad Hossein Abdi
- School of Chemical and polymer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Zhang S, Yu F, Chen J, Yan D, Gong D, Chen L, Chen J, Yao Q. A thin film comprising silk peptide and cellulose nanofibrils implanting on the electrospun poly(lactic acid) fibrous scaffolds for biomedical reconstruction. Int J Biol Macromol 2023; 251:126209. [PMID: 37567522 DOI: 10.1016/j.ijbiomac.2023.126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Conjunctival reconstruction using biocompatible polymers constitutes an effective treatment for conjunctival scarring and associated visual impairment. In this work, a thin film comprising silk peptide (SP), cellulose nanofibrils (CNF) and Ag nanoparticles (AgNPs) that implanted on the poly(lactic acid) (PLA) electrospun fibrous membranes (EFMs) was designed for biomedical reconstruction. SP and CNF as thin films can improve the surface hydrophilicity of the as-prepared scaffolds, which synergistically enhanced the biocompatibility. In in vivo experiments, the developed PLA EFMs modified with 3 wt% SP/CNF/AgNPs could be easily manipulated and transplanted onto conjunctival defects in rabbits, consequently accelerating the structural and functional restoration of the ocular surface in 12 days. Additionally, incorporation of 0.30 mg/g AgNPs efficiently reduced the topical application of antibiotics without causing infections. Thus, these resultant scaffolds could not only serve as useful alternatives for conjunctival engineering, but also prevent infections effectively with a very low content of AgNPs.
Collapse
Affiliation(s)
- Siyi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jin Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Danni Gong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Junzhao Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
8
|
Biomedical applications of silica-based aerogels: a comprehensive review. Macromol Res 2023. [DOI: 10.1007/s13233-023-00142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Hasanbegloo K, Banihashem S, Faraji Dizaji B, Bybordi S, Farrokh-Eslamlou N, Abadi PGS, Jazi FS, Irani M. Paclitaxel-loaded liposome-incorporated chitosan (core)/poly(ε-caprolactone)/chitosan (shell) nanofibers for the treatment of breast cancer. Int J Biol Macromol 2023; 230:123380. [PMID: 36706885 DOI: 10.1016/j.ijbiomac.2023.123380] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Liposomes and nanofibers have been introduced as effective drug delivery systems of anticancer drugs. The performance of chitosan (core)/poly(ε-caprolactone) (PCL)/paclitaxel simple nanofibers, chitosan/paclitaxel (core)/PCL/chitosan (shell) nanofibers and paclitaxel-loaded liposome-incorporated chitosan (core)/PCL-chitosan (shell) nanofibers was investigated for the controlled release of paclitaxel and the treatment of breast cancer. The synthesized formulations were characterized using polydispersity index, dynamic light scattering, zeta potential, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared analysis. The sustained release of paclitaxel from liposome-loaded nanofibers was achieved within 30 days. The release data was best described using Korsmeyer-Peppas pharmacokinetic model. The cell viabilities of synthesized nanofibrous samples were higher than 98 % ± 1 % toward L929 normal cells after 168 h. The maximum cytotoxicity against MCF-7 breast cancer cells was 85 % ± 2.5 % using liposome-loaded core-shell nanofibers. The in vivo results indicated the reduction of tumor weight from 1.35 ± 0.15 g to 0.65 ± 0.05 g using liposome-loaded core-shell nanofibers and its increasing from 1.35 ± 0.15 g to 3.2 ± 0.2 g using pure core-shell nanofibers. The three-stage drug release behavior of paclitaxel-loaded liposome-incorporated core-shell nanofibers and the high in vivo tumor efficiency suggested the development of these formulations for cancer treatment in the future.
Collapse
Affiliation(s)
- Kimiya Hasanbegloo
- Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Solmaz Banihashem
- Department of Chemistry, College of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Babak Faraji Dizaji
- Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Bybordi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nika Farrokh-Eslamlou
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
10
|
Chen Y, Xu W, Shafiq M, Song D, Wang T, Yuan Z, Xie X, Yu X, Shen Y, Sun B, Liu Y, Mo X. Injectable nanofiber microspheres modified with metal phenolic networks for effective osteoarthritis treatment. Acta Biomater 2023; 157:593-608. [PMID: 36435438 DOI: 10.1016/j.actbio.2022.11.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Osteoarthritis (OA) is one of the most common chronic musculoskeletal diseases, which accounts for a large proportion of physical disabilities worldwide. Herein, we fabricated injectable gelatin/poly(L-lactide)-based nanofibrous microspheres (MS) via electrospraying technology, which were further modified with tannic acid (TA) named as TMS or metal phenolic networks (MPNs) consisting of TA and strontium ions (Sr2+) and named as TSMS to enhance their bioactivity for OA therapy. The TA-modified microspheres exhibited stable porous structure and anti-oxidative activity. Notably, TSMS showed a sustained release of TA as compared to TMS, which exhibited a burst release of TA. While all types of microspheres exhibited good cytocompatibility, TSMS displayed good anti-inflammatory properties with higher cell viability and cartilage-related extracellular matrix (ECM) secretion. The TSMS microspheres also showed less apoptosis of chondrocytes in the hydrogen peroxide (H2O2)-induced inflammatory environment. The TSMS also inhibited the degradation of cartilage along with the considerable repair outcome in the papain-induced OA rabbit model in vivo as well as suppressed the expression level of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1-beta (IL-1β). Taken together, TSMS may provide a highly desirable therapeutic option for intra-articular treatment of OA. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) is a chronic disease, which is caused by the inflammation of joint. Current treatments for OA achieve pain relief but hardly prevent or slow down the disease progression. Microspheres are at the forefront of drug delivery and tissue engineering applications, which can also be minimal-invasively injected into the joint. Polyphenols and therapeutic ions have been shown to be beneficial for the treatment of diseases related to the joints, including OA. Herein, we prepared gelatin/poly(L-lactide)-based nanofibrous microspheres (MS) via electrospinning incorporated electrospraying technology and functionalized them with the metal phenolic networks (MPNs) consisting of TA and strontium ions (Sr2+), and assessed their potential for OA therapy both in vitro and in vivo.
Collapse
Affiliation(s)
- Yujie Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Wei Xu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang 261000, China; Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai 200001, China; Department of Plastic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| | - Muhammad Shafiq
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China; Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Daiying Song
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang 261000, China; Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai 200001, China
| | - Tao Wang
- Department of Plastic and Cosmetic Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200001, China
| | - Zhengchao Yuan
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Xianrui Xie
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, China
| | - Xiao Yu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Yihong Shen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Yu Liu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang 261000, China; Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai 200001, China.
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China.
| |
Collapse
|
11
|
Hassouna A, Elgharbawy H, Morsy R. Development of porous scaffolds based on the in situ synthesis of biphasic calcium phosphate in a gelatin-polyvinyl alcohol matrix for bone tissue engineering. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Kenawy ERS, Kamoun EA, Eldin MS, Soliman HMA, EL-Moslamy SH, El-Fakharany EM, Shokr ABM. Electrospun PVA–Dextran Nanofibrous Scaffolds for Acceleration of Topical Wound Healing: Nanofiber Optimization, Characterization and In Vitro Assessment. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023; 48:205-222. [DOI: 10.1007/s13369-022-06856-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/29/2022] [Indexed: 11/02/2022]
Abstract
AbstractElectrospun polyvinyl alcohol–dextran (PVA–Dex)-based nanofibers (NFs) are explored as a novel class of bioactive injury dressing materials, which have an essential role for topical injury mending. Sodium ampicillin-loaded citric acid-cross-linked PVA–Dex NFs were fabricated by electrospinner for wound recuperating purposes. Results revealed that PVA (10%)–dextran (10%) cross-linked with 5% citric acid (CA) was chosen as an optimized condition for obtaining non-beaded and morphological accepted nanofibers. Altered concentrations of CA as cross-linker progressively enhanced significantly the mechanical/thermal stability and wettability-proof of NFs scaffolds, compared to un-cross-linked (PVA–Dex) scaffolds. Meanwhile, swelling (%), protein adsorption and released ampicillin of NFs decreased dramatically with the increase in the CA concentration, and conversely enhanced with increasing dextran concentrations. Interestingly, resultant PVA–Dex NFs with high concentrations of dextran promoted the proliferation ofHFB-4cells in a high concentration-dependent manner and high antimicrobial activity behavior, compared to NFs containing high concentrations of CA cross-linker after 24 and 48 h of cell exposure. Notably, all fabricated NFs have remarked ability to accelerate the rate of in vitro wound gap closure (%) after treatment for 24 and 48 h, compared to control sample. However, reducing CA concentration in NFs showed the highest percentages of wound healing for scratchedHFB-4cells with clear observed healing process.
Collapse
|
13
|
Abdulahy SB, Esmaeili Bidhendi M, Vaezi MR, Moosazadeh Moghaddam M. Osteogenesis Improvement of Gelatin-Based Nanocomposite Scaffold by Loading Zoledronic Acid. Front Bioeng Biotechnol 2022; 10:890583. [PMID: 35547164 PMCID: PMC9081530 DOI: 10.3389/fbioe.2022.890583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Bisphosphonates (BPs) such as Zoledronic acid (ZA) are a subset of synthetic small molecules, which are now marketed as the main drugs to stimulate the growth and differentiation of osteoblast cells, thereby increasing bone formation as well as preventing bone loss. Also, Halloysite Nanotubes (HNTs)-polymer composites have attracted a lot of attention due to their high surface-to-volume ratio, low density, and high hydrophilicity, and are easily dispersed in hydrophilic biopolymers. In addition, their ability to carry enough amounts of drugs and the ability to control release has been demonstrated. Based on studies, the Gelatin-based scaffold with Halloysite nanotube (HNT) has the capacity as a drug carrier and Zoledronic acid (ZA) sustains release. Previous studies show that using ZA intravenously has some severe side effects and limitations. But by attention to the advantages of its osteogenesis, the current study has been done in order to reduce the side effects of local delivery of it. The 3-dimensional scaffolds were prepared by the Freeze-drying method. Characterization methods such as FE-SEM, FTIR, XRD, and release behavior of the scaffold has been performed to evaluate the features of the scaffolds. In fact, as-prepared Gel-HNT/ZA release 49% ZA in Phosphate Buffered Saline (PBS) within 21 days. The mechanical properties have been increased after adding HNTs and ZA from 10.27 to 26.18 MPa. Also, the water absorption has been increased after adding HNTs and ZA from 1.67 to 5.02 (g/g). Seeded human Adipose stem cells (hASCs) on the prepared scaffolds showed that the ZA effectively elevated the proliferation of the hASCs and also the MTT results proved the non-toxicity of all prepared scaffolds by high cell viability (˃80%). The osteogenic differentiation has been accelerated as displayed by ALP and Ca assay. The results propose that the HNTs-loaded Gelatin scaffold could control the releasing of ZA and its localized delivery at the defect site, simultaneously promoting the mechanical and osteogenesis ability of gelatin-based scaffolds.
Collapse
Affiliation(s)
- Sayed Behnam Abdulahy
- Biomaterial and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Faculty of New Science and Technology, University of Tehran (UT), Tehran, Iran
| | | | - Mohammad Reza Vaezi
- Department of Nanotechnology and Advanced Material, Materials and Energy Research Center (MERC), Karaj, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- *Correspondence: Mehrdad Moosazadeh Moghaddam, ,
| |
Collapse
|
14
|
Ahmad Ruzaidi DA, Mahat MM, Mohamed Sofian Z, Nor Hashim NA, Osman H, Nawawi MA, Ramli R, Jantan KA, Aizamddin MF, Azman HH, Robin Chang YH, Hamzah HH. Synthesis and Characterization of Porous, Electro-Conductive Chitosan-Gelatin-Agar-Based PEDOT: PSS Scaffolds for Potential Use in Tissue Engineering. Polymers (Basel) 2021; 13:2901. [PMID: 34502941 PMCID: PMC8434095 DOI: 10.3390/polym13172901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Herein we report the synthesis and characterization of electro-conductive chitosan-gelatin-agar (Cs-Gel-Agar) based PEDOT: PSS hydrogels for tissue engineering. Cs-Gel-Agar porous hydrogels with 0-2.0% (v/v) PEDOT: PSS were fabricated using a thermal reverse casting method where low melting agarose served as the pore template. Sample characterizations were performed by means of scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction analysis (XRD) and electrochemical impedance spectroscopy (EIS). Our results showed enhanced electrical conductivity of the cs-gel-agar hydrogels when mixed with DMSO-doped PEDOT: PSS wherein the optimum mixing ratio was observed at 1% (v/v) with a conductivity value of 3.35 × 10-4 S cm-1. However, increasing the PEDOT: PSS content up to 1.5 % (v/v) resulted in reduced conductivity to 3.28 × 10-4 S cm-1. We conducted in vitro stability tests on the porous hydrogels using phosphate-buffered saline (PBS) solution and investigated the hydrogels' performances through physical observations and ATR-FTIR characterization. The present study provides promising preliminary data on the potential use of Cs-Gel-Agar-based PEDOT: PSS hydrogel for tissue engineering, and these, hence, warrant further investigation to assess their capability as biocompatible scaffolds.
Collapse
Affiliation(s)
- Dania Adila Ahmad Ruzaidi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (M.A.N.); (R.R.); (K.A.J.); (M.F.A.)
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (M.A.N.); (R.R.); (K.A.J.); (M.F.A.)
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nikman Adli Nor Hashim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Drug Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Hazwanee Osman
- Centre of Foundation Studies UiTM, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Malaysia;
| | - Mohd Azizi Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (M.A.N.); (R.R.); (K.A.J.); (M.F.A.)
| | - Rosmamuhamadani Ramli
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (M.A.N.); (R.R.); (K.A.J.); (M.F.A.)
| | - Khairil Anuar Jantan
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (M.A.N.); (R.R.); (K.A.J.); (M.F.A.)
| | - Muhammad Faiz Aizamddin
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (M.A.N.); (R.R.); (K.A.J.); (M.F.A.)
| | - Hazeeq Hazwan Azman
- Centre for Foundation and General Studies, Universiti Selangor, Bestari Jaya 45600, Malaysia;
| | - Yee Hui Robin Chang
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Sarawak, Samarahan 94300, Malaysia;
| | | |
Collapse
|