1
|
Ma X, Xie Y, Tang J, Xue J, Chen Z. Two novel SNS-donor palladium(II) complexes of benzoxazole and benzothiazole derivatives as potential anticancer agents. Dalton Trans 2025; 54:1677-1688. [PMID: 39670532 DOI: 10.1039/d4dt02684e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Two novel mononuclear palladium(II) complexes, [PdL1Cl]Cl (1) and [PdL2Cl]Cl (2) with SNS-donor ligands [where L1 = N-(4-(benzo[d]oxazol-2-yl)phenyl)-2-(bis(2-ethylthioethyl)amino)acetamide, L2 = N-(4-(benzo[d]thiazol-2-yl)phenyl)-2-(bis(2-ethylthioethyl)amino)acetamide], were synthesized and characterized. In vitro antiproliferative activity tests showed that the two palladium(II) complexes displayed excellent antiproliferative activity against all tested cancer cell lines, especially human colon cancer HCT-116, human liver cancer HepG-2, and human breast cancer MDA-MB-231 cells. Spectacularly, complexes 1 and 2 exhibited approximately 8.49- and 6.88-fold higher antiproliferative activity, as compared with cisplatin, against HCT-116, respectively, but were less toxic to human normal colon fibroblast CCD-18Co cell lines with selectivity index (SI = IC50(CCD-18Co)/IC50(HCT-116)) values of 22.43 and 21.48 for 1 and 2, respectively, compared to that of cisplatin (SI, 1.74). These results suggested that the two palladium complexes have the potential to act as candidates for the treatment of colorectal cancer. The interaction of the complexes with CT-DNA and pUC19 plasmid DNA illustrated that both 1 and 2 could strongly bind to the DNA helix via an intercalative mode and covalent interaction and perturb the tertiary structure of DNA, where the DNA binding affinity of 1 was slightly higher than that of 2. Additionally, investigations of the reaction of the two complexes with 5'-GMP and glutathione (GSH) showed that both 1 and 2 could readily react with 5'-GMP and GSH to form Pd-GMP adducts and Pd-GS adducts, respectively, and when 5'-GMP and GSH coexisted, the coordination binding of the complexes with GSH did not prevent the formation of the Pd-GMP adducts. Moreover, Hoechst 33342 staining and flow cytometry analysis demonstrated that the two palladium(II) complexes arrested HCT-116 cells mainly at the G2/M phase, induced mitochondrial-membrane depolarization, increased ROS generation, and triggered obvious cell apoptosis.
Collapse
Affiliation(s)
- Xiaomeng Ma
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Yuting Xie
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Jiazhen Tang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Jian Xue
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Zhanfen Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| |
Collapse
|
2
|
Zhao D, Zhen H, Xue J, Tang Z, Han X, Chen Z. A novel benzothiazole-based mononuclear platinum(II) complex displaying potent antiproliferative activity in HepG-2 cells via mitochondrial-mediated apoptosis. J Inorg Biochem 2024; 251:112437. [PMID: 38016330 DOI: 10.1016/j.jinorgbio.2023.112437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
A novel mononuclear platinum(II) complex, [Pt(L-H)Cl] (1, where L= N-(4-(benzo[d]thiazol-2-yl)phenyl)-2-((2-pyridylmethyl)(2-hydroxyethyl)-amino)acetamide), was obtained by covalently tethering a benzothiazole derivative 2-(4-aminophenyl)benzothiazole to the 2-pyridylmethyl-2-hydroxyethylamine chelating PtII center. In vitro tests indicated that complex 1 displayed excellent antiproliferative activity against the tested cancer cell lines, especially liver cancer HepG-2 and SMMC-7221 cells. Importantly, the complex possessed 4.33-fold higher antiproliferative activity as compared with cisplatin against HepG-2 cells, but was less toxic to the normal cell line L02 with the selectivity index (SI = IC50(L02)/IC50(HepG-2)) value of 8.36 compared to cisplatin (SI, 1.40). The results suggested that 1 might have the potential to act as a candidate for the treatment of hepatocellular carcinoma (HCC). Cellular uptake and distribution studies showed that 1 could effectively pass through the membrane of cells, enter the nuclei and mitochondria, induce the platination of cellular DNA. The interaction of 1 with CT-DNA demonstrated that 1 could effectively bind to DNA in a dual binding mode, i.e., the intercalation of the 2-(4-aminophenyl)benzothiazole unit plus monofunctional platination of the platinum(II) moiety. In addition, Hoechst 33342 staining and flow cytometry analysis illustrated that 1 arrested the cell cycle in HepG-2 cancer cells at G2/M phases, induced mitochondrial membrane depolarization, increased ROS generation, and caused obvious cell apoptosis. Further cellular mechanism studies elucidated that 1 triggered HepG-2 cell apoptosis via the mitochondrial-mediated pathway by upregulating the gene and protein expression levels of Bax, downregulating the gene and protein expression levels of Bcl-2, and activating the caspase cascade.
Collapse
Affiliation(s)
- Dandan Zhao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, PR China
| | - Hongyan Zhen
- School of Medicine, Jianghan University, Wuhan 430056, PR China
| | - Jian Xue
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, PR China
| | - Zhipeng Tang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, PR China
| | - Xiaofang Han
- School of Environment and Health, Jianghan University, Wuhan 430056, PR China
| | - Zhanfen Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, PR China.
| |
Collapse
|
3
|
Abdullah Al Awadh A. Biomedical applications of selective metal complexes of indole, benzimidazole, benzothiazole and benzoxazole: A review (From 2015 to 2022). Saudi Pharm J 2023; 31:101698. [PMID: 37533494 PMCID: PMC10393588 DOI: 10.1016/j.jsps.2023.101698] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
Indole, benzoxazole benzothiazole and benzimidazole are excellent classes of organic heterocyclic compounds. These compounds show significant application in pharmacy, industries, dyes, medicine, polymers and food packages. These compounds also form metal complexes with copper, zinc, cadmium, nickel, cobalt, platinum, gold, palladium chromium, silver, iron, and other metals that have shown to be significant applications. Recently, researchers have attracted enormous attention toward heterocyclic compounds such as indole, benzimidazole, benzothiazole, benzoxazole, and their complexes due to their excellent medicinal applications such as anti-ulcerogenic, anti-cancer, antihypertensive, antifungal, anti-inflammatory, antitubercular, antiparasitic, anti-obesity, antimalarial, antiglycation, antiviral potency, antineuropathic, analgesic antioxidant, antihistaminic, and antibacterial potentials. In this article, we summarize the medicinal applications of these compounds as well as their metal complexes. We hope this article will help researchers in designing and synthesizing novel and potent compounds with significant applications in various fields.
Collapse
|
4
|
Sharfalddin AA, Al-Younis IM, Emwas AH, Jaremko M. Investigating the Biological Potency of Nitazoxanide-Based Cu(II), Ni(II) and Zn(II) Complexes Synthesis, Characterization and Anti-COVID-19, Antioxidant, Antibacterial and Anticancer Activities. Molecules 2023; 28:6126. [PMID: 37630378 PMCID: PMC10458470 DOI: 10.3390/molecules28166126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
In this work, the biological potency of nitazoxanide (NTZ) was enhanced through coordination with transition metal ions Cu(II), Ni(II), and Zn(II). Initially, complexes with a ligand-metal stoichiometry of 2:1 were successfully synthesized and characterized by spectroscopic techniques and thermogravimetric methods. Measurement of the infrared spectrum revealed the bidentate nature of the ligand and excluded the possibility of the metal ion-amide group interaction. Nuclear magnetic resonance spectra showed a reduction in the NH- intensity signal and integration, indicating the possibility of enolization and the formation of keto-enol tautomers. To interpret these results, density functional theory was utilized under B3LYP/6-311G** for the free ligand and B3LYP/LANL2DZ for the metal complexes. We used UV-Vis and fluorescence spectroscopy to understand the biological properties of the complexes. This showed stronger interactions of NTZ-Cu(II) and NTZ-Ni(II) with DNA molecules than the NTZ-Zn(II) compound, with a binding constant (Kb) for the copper complex of 7.00 × 105 M-1. Both Cu(II)- and Ni(II)-NTZ had functional binding to the SARS-CoV-2 (6LU7) protease. Moreover, all metal complexes showed better antioxidation properties than the free ligand, with NTZ-Ni(II) having the best IC50 value of 53.45 μg/mL. NTZ-Ni(II) was an effective antibacterial, with a mean inhibitory concentration of 6 μM, which is close to that of ampicillin (a reference drug). The metal complexes had moderated anticancer potencies, with NTZ-Cu(II) having IC50 values of 24.5 and 21.5 against human breast cancer cells (MCF-7) and cancerous cervical tumor cells (HeLa), respectively. All obtained complexes exhibited high selectivity. Finally, the metal ions showed a practical role in improving the biological effectiveness of NTZ molecules.
Collapse
Affiliation(s)
- Abeer A. Sharfalddin
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Inas M. Al-Younis
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Alshaikh NE, Zaki M, Sharfalddin AA, Al-Radadi NS, Hussien MA. Synthesis, Structural Characterization, DNA/HSA Binding, Molecular Docking and Anticancer Studies of Some D-Luciferin Complexes. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
6
|
Wu Y, Zhao D, Shang J, Huang W, Chen Z. A novel star-shaped trinuclear platinum(II) complex based on a 1,3,5-triazine core displaying potent antiproliferative activity against TNBC by the mitochondrial injury and DNA damage mechanism. Dalton Trans 2022; 51:10930-10942. [PMID: 35731536 DOI: 10.1039/d2dt00895e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polynuclear platinum(II) complexes represent a class of great prospective Pt-based antitumor drugs that may expand the antitumor spectrum and overcome the clinical problems of drug resistance and side effects of platinum-based drugs. Herein, a novel star-shaped trinuclear platinum(II) complex [Pt3(L-3H)Cl3] (1, L = 2,4,6-tris[(2-hydroxybenzyl)(2-pyridylmethyl)amine]-1,3,5-triazine) and its monomer [Pt(L'-H)Cl] (2, L' = (2-hydroxybenzyl)(2-pyridylmethyl)amine) were synthesized and characterized. The in vitro antiproliferative activities of complexes 1 and 2 against a panel of human cancer cell lines including MDA-MB-231 (triple-negative breast cancer, TNBC), MCF-7 (breast), HepG-2 (liver), and A549 (lung) were investigated. The results revealed that 1 exhibited much higher antiproliferative properties than its monomer 2 against the tested cell lines. Importantly, 1 possessed 3.3-fold higher antiproliferative activity as compared with cisplatin against the TNBC cell line MDA-MB-231. Another TNBC cell line MDA-MB-468 is also sensitive to 1. The results indicated that 1 might have the potential to act as a candidate for the treatment of TNBC. Cellular uptake and distribution studies showed that 1 could pass through the membrane of cells and enter into cells and mainly accumulate in the nuclei and mitochondria. 1 could bind to DNA in a cooperative groove-electrostatic-platinating binding mode and induce stronger DNA double-strand breaks (DSBs) and damaging effects on MDA-MB-231 than cisplatin (upregulation of γ-H2AX). Moreover, the DNA damage could not be easily repaired (upregulation of p53), which would exert a much positive influence on the overcoming of drug resistance. Additionally, flow cytometry studies showed that 1 arrested the cell cycle in the G0/G1 phase, induced mitochondrial membrane depolarization, increased ROS generation, and induced cell apoptosis. The results demonstrated that 1 could target simultaneously mitochondria and nuclei that gave rise to mitochondrial injury and DNA damage and ultimately efficiently promote the apoptotic death of tumor cells. Further mechanistic studies showed that 1 induced MDA-MB-231 cell apoptosis via the p53-mediated mitochondrial pathway by upregulating Bax and cytochrome c and downregulating Bcl-2 proteins, leading to the activation of caspase-3 and upregulation of the cleaved-PARP level. Taken together, 1 with such a synergic mechanism has great potential to be an effective anticancer agent that can overcome treatment resistance in TNBC.
Collapse
Affiliation(s)
- Yixuan Wu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Dandan Zhao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Jinting Shang
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, P. R. China
| | - Wenxin Huang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Zhanfen Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China. .,Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, P. R. China
| |
Collapse
|
7
|
Zhang Y, Liu P, Majonis D, Winnik MA. Polymeric dipicolylamine based mass tags for mass cytometry. Chem Sci 2022; 13:3233-3243. [PMID: 35414868 PMCID: PMC8926288 DOI: 10.1039/d2sc00595f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Mass cytometry is an emerging powerful bioanalytical technique for high-dimensional single-cell analysis. In this technique, cells are stained with metal-isotope-tagged antibodies and are analyzed by an inductively coupled plasma time-of-flight mass spectrometer. While there are more than 100 stable isotopes available in the m/z 75 to 209 detection range of the instrument, only about 50 parameters can be measured per cell because current reagents are metal-chelating polymers with pendant aminocarboxylate chelators that only bind hard metal ions such as the rare earths and Bi3+. Here we describe the synthesis and characterization of a new type of metal-chelating polymer with pendant dipicolylamine chelators suited to binding intermediate to soft metals such as rhenium and platinum. We introduce two different conjugation strategies, a thiol–maleimide reaction that works well for rhenium, and a DBCO-azide click reaction designed to avoid potential complications of Pt and other heavy metals interacting with thiol groups. We show that these polymers can serve as new elemental mass tags for mass cytometry. Antibody-polymer conjugates of CD20 and CD8a prepared by both coupling reactions were employed in conjunction with commercial metal-conjugated antibodies for multi-parameter single-cell immunoassays. A new type of metal-chelating polymer with pendant dipicolylamine chelators that bind rhenium and platinum has been developed for mass cytometry applications.![]()
Collapse
Affiliation(s)
- Yefeng Zhang
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Peng Liu
- Fluidigm Canada Inc. 1380 Rodick Road, Suite 400 Markham ON L3R 4G5 Canada
| | - Daniel Majonis
- Fluidigm Canada Inc. 1380 Rodick Road, Suite 400 Markham ON L3R 4G5 Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto ON M5S 3E5 Canada
| |
Collapse
|
8
|
Affiliation(s)
| | | | - S. M. Rahatul Alam
- Department of Chemistry, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|