1
|
Zheng RH, Wei WM. Theoretical investigation of vibrational energy transfer of water at the gas/liquid interface around 3400 cm-1. J Chem Phys 2025; 162:184101. [PMID: 40337930 DOI: 10.1063/5.0268335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
Using molecular dynamics simulations based on neural network potentials and a mixed quantum/classical approach, we theoretically explore vibrational energy transfer pathways for OH groups around 3400 cm-1 at interfaces. Our calculations show that intramolecular vibrational energy transfer has a time constant of 369.2 fs, aligning with experimental findings. The reorientation time is 1624 fs. The intermolecular vibrational energy transfer rate is slower due to weak couplings between water molecules. Our results suggest that intramolecular energy transfer is the main driver of vibrational energy transfer for OH groups around 3400 cm-1 at the gas/water interface.
Collapse
Affiliation(s)
- Ren-Hui Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, People's Republic of China
| | - Wen-Mei Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| |
Collapse
|
2
|
Hirano T, Morita A. Local field effects of quadrupole contributions on sum frequency generation spectroscopy. J Chem Phys 2024; 161:244707. [PMID: 39786910 DOI: 10.1063/5.0235557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
In the theory of condensed-phase spectroscopy, local field effect is of general importance to account for intermolecular electrostatic interactions. The present paper extends the microscopic treatment of local field effects on the sum frequency generation (SFG) spectroscopy to incorporate quadrupole interactions, since their roles have been increasingly recognized in the SFG spectroscopy. The extended theory involves some corrections to the conventional formulas of the nonlinear susceptibilities in both the interface and bulk regions, including the χIQB term. Fresnel transformations for the interface and bulk susceptibilities are rigorously applied, which implies inseparability of the interface and bulk signals in PSS and PPP cases. We examined the influence of the corrections with quantitative calculations of the susceptibilities, including dipolar and quadrupolar interactions.
Collapse
Affiliation(s)
- Tomonori Hirano
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Akihiro Morita
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
3
|
Hore DK. Phase of the second-order susceptibility in vibrational sum frequency generation spectroscopy: Origins, utility, and measurement techniques. J Chem Phys 2024; 161:060902. [PMID: 39132786 DOI: 10.1063/5.0220817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Vibrational sum frequency generation can provide valuable structural information at surfaces and buried interfaces. Relating the measured spectra to the complex-valued second-order susceptibility χ(2) is at the heart of the technique and a requisite step in nearly all subsequent analyses. The magnitude and phase of χ(2) as a function of frequency reveal important information about molecules and materials in regions where centrosymmetry is broken. In this tutorial-style perspective, the origins of the χ(2) phase are first described, followed by the utility of phase determination. Finally, some practical methods of phase extraction are discussed.
Collapse
Affiliation(s)
- Dennis K Hore
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada and Department of Computer Science, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
4
|
Yang P, Kumarasiri A, Hore D. Surface populations as a model for the distance-dependence of the interfacial refractive index. J Chem Phys 2024; 161:054703. [PMID: 39087546 DOI: 10.1063/5.0221234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Vibrational sum frequency spectra provide information about interfaces that is sensitive to the orientation of molecules, their electronic environment, and the local electric fields. Here, we use molecular dynamics simulations in order to study a surfactant, para-cyanophenol, at the air-water interface. The volume fractions of water and the organic surfactant are considered at various points over the nanometer-scale region in a Lorentz-Lorenz model. We find that the calculated ratios of nonlinear susceptibility tensor elements are in agreement with experimental data only when this depth profile was considered. We also use these data to evaluate the ratio of the C-N hyperpolarizability tensor elements in the interfacial region.
Collapse
Affiliation(s)
- Peter Yang
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Aruna Kumarasiri
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Dennis Hore
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- Department of Computer Science, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
5
|
Kumarasiri A, Yang P, Hore DK. Second-Order Nonlinear Optics as an Orientation-Independent Probe of Molecular Environments at Interfaces. J Phys Chem Lett 2023; 14:4449-4453. [PMID: 37146122 DOI: 10.1021/acs.jpclett.3c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Measurement techniques that probe the second-order susceptibility, such as second-harmonic and sum-frequency generation, are recognized for their ability to study environments with broken centrosymmetry. As a result, they serve as reporters of molecules at surfaces because the second-order susceptibility is often zero in the adjacent bulk media. Although the signals measured in such experiments carry unique information about the interfacial environment, the challenge is to disentangle properties related to the electronic structure as they are wrapped up in the orientation distribution. Over the past 30 years, this challenge has been turned into an opportunity, as many studies have sought to learn about the arrangement of molecules at surfaces. Here we demonstrate that the flipped case is possible, where fundamental properties of the interfacial environment can be extracted in a manner that is completely independent of, and therefore oblivious to, the orientation distribution. Using p-cyanophenol adsorbed at the air-water interface as an example, we illustrate that the cyano group polarizability varies less along the direction of the C-N bond when at the surface than when the same molecules are in the bulk aqueous phase.
Collapse
Affiliation(s)
- Aruna Kumarasiri
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Peter Yang
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Dennis K Hore
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- Department of Computer Science, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
6
|
Zheng RH, Wei WM, Zhang SC. Sum-frequency vibrational spectroscopy of centrosymmetric molecule at interfaces. J Chem Phys 2023; 158:074701. [PMID: 36813719 DOI: 10.1063/5.0139895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The centrosymmetric benzene molecule has zero first-order electric dipole hyperpolarizability, which results in no sum-frequency vibrational spectroscopy (SFVS) signal at interfaces, but it shows very strong SFVS experimentally. We perform a theoretical study on its SFVS, which is in good agreement with the experimental results. Its strong SFVS mainly comes from the interfacial electric quadrupole hyperpolarizability rather than the symmetry-breaking electric dipole, bulk electric quadrupole, and interfacial and bulk magnetic dipole hyperpolarizabilities, which provides a novel and completely unconventional point of view.
Collapse
Affiliation(s)
- Ren-Hui Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, People's Republic of China
| | - Wen-Mei Wei
- Department of Chemistry, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Shuo-Cang Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, People's Republic of China
| |
Collapse
|
7
|
Yu X, Chiang KY, Yu CC, Bonn M, Nagata Y. On the Fresnel factor correction of sum-frequency generation spectra of interfacial water. J Chem Phys 2023; 158:044701. [PMID: 36725499 DOI: 10.1063/5.0133428] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Insights into the microscopic structure of aqueous interfaces are essential for understanding the chemical and physical processes on the water surface, including chemical synthesis, atmospheric chemistry, and events in biomolecular systems. These aqueous interfaces have been probed by heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy. To obtain the molecular response from the measured HD-SFG spectra, one needs to correct the measured ssp spectra for local electromagnetic field effects at the interface due to a spatially varying dielectric function. This so-called Fresnel factor correction can change the inferred response substantially, and different ways of performing this correction lead to different conclusions about the interfacial water response. Here, we compare the simulated and experimental spectra at the air/water interface. We use three previously developed models to compare the experiment with theory: an advanced approach taking into account the detailed inhomogeneous interfacial dielectric profile and the Lorentz and slab models to approximate the interfacial dielectric function. Using the advanced model, we obtain an excellent quantitative agreement between theory and experiment, in both spectral shape and amplitude. Remarkably, we find that for the Fresnel factor correction of the ssp spectra, the Lorentz model for the interfacial dielectric function is equally accurate in the hydrogen (H)-bonded region of the response, while the slab model underestimates this response significantly. The Lorentz model, thus, provides a straightforward method to obtain the molecular response from the measured spectra of aqueous interfaces in the H-bonded region.
Collapse
Affiliation(s)
- Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kuo-Yang Chiang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Chun-Chieh Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
8
|
The Role of Resonant Coupling in Vibrational Sum-Frequency-Generation Spectroscopy: Liquid Acetonitrile at the Silica Interface. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Abstract
We describe a basic theoretical treatment of how film-substrate and substrate-environment (air, water, and solution) interfaces can be selectively probed by controlling the film thickness and beam angles in a visible-infrared sum frequency generation experiment. In this model, we also account for the unique interfacial environment that may have optical properties that differ from the adjacent bulk phases. We see that this affects components of the electric field that are perpendicular to the surface such as when p-polarized light is used. We then provide an example using the glass-polydimethylsiloxane-air system and model the fields at both surfaces of the polymer. This is followed by some practical considerations for setting up such experiments and some typical experimental results.
Collapse
|
10
|
Wang H, Hu XH, Wang HF. Temporal and Chirp Effects of Laser Pulses on the Spectral Lineshape in Sum-Frequency Generation Vibrational Spectroscopy. J Chem Phys 2022; 156:204706. [DOI: 10.1063/5.0088506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Assignment and interpretation of the sum-frequency generation vibrational spectra (SFG-VS) depend on the ability to measure and understand the factors affecting the SFG-VS spectral lineshape accurately and reliably. In the past, the formulation of the polarization selection rules for SFG-VS and the development of the sub-wavenumber high-resolution broadband SFG-VS (HR-BB-SFG-VS) have provided solutions for many of these needs. However, despite these advantages, HR-BB-SFG-VS has not been widely adopted. The majority of SFG measurements so far still relies on the picosecond scanning SFG-VS (ps-SFG-VS) or the conventional broadband SFG-VS (BB-SFG-VS) with the spectral resolution around (mostly above) 10 cm-1, which also results in less ideal spectral lineshape in the SFG spectra due to the temporal and chirp effects of the laser pulses used in experiment. In this report, the temporal and the chirp effects of laser pulses with different profiles in the SFG experiment on the measured SFG-VS spectral lineshape are examined through spectral simulation. In addition, the experimental data of a classical model system, i.e., OTS (octadecyltrichlorosilane) monolayer on glass, obtained from the ps-SFG-VS, the BB-SFG-VS, and the HR-BB-SFG-VS measurements, are directly compared and examined. These results show that temporal and chirp effects are often significant in the conventional BB-SFG-VS, resulting lineshape distortions and peak position shifts besides spectral broadening. Such temporal and chirp effects are less significant in the ps scanning SFG-VS. For the HR-BB-SFG-VS, spectral broadening, and temporal and chirp effects are insignificant, making HR-BB-SFG-VS the choice for accurate and reliable measurement and analysis of SFG-VS spectra.
Collapse
|
11
|
Dramstad TA, Wu Z, Massari AM. Sum frequency generation as a proxy for ellipsometry: Not just a phase. J Chem Phys 2022; 156:110901. [DOI: 10.1063/5.0076252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Infrared refractive indices of organic materials are typically resolved through IR ellipsometry. This technique takes advantage of optical interference effects to solve the optical constants. These are the same effects that complicate the analysis of coherent spectroscopy experiments on thin films. Vibrational sum frequency generation is an interface-specific coherent spectroscopy that requires spectral modeling to account for optical interference effects to uncover interfacial molecular responses. Here, we explore the possibility of leveraging incident beam geometries and sample thicknesses to simultaneously obtain the molecular responses and refractive indices. Globally fitting a higher number of spectra with a single set of refractive indices increases the fidelity of the fitted parameters. Finally, we test our method on samples with a range of thicknesses and compare the results to those obtained by IR ellipsometry.
Collapse
Affiliation(s)
- Thorn A. Dramstad
- University of Minnesota–Twin Cities, 207 Pleasant St. SE, Minneapolis, Minnesota 55454, USA
| | - Zhihao Wu
- University of Minnesota–Twin Cities, 207 Pleasant St. SE, Minneapolis, Minnesota 55454, USA
| | - Aaron M. Massari
- University of Minnesota–Twin Cities, 207 Pleasant St. SE, Minneapolis, Minnesota 55454, USA
| |
Collapse
|
12
|
Zheng RH, Wei WM. Sum-frequency vibrational spectroscopy of methanol at interfaces due to Fermi resonance. Phys Chem Chem Phys 2022; 24:27204-27211. [DOI: 10.1039/d2cp01808j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We present a theoretical method of studying sum-frequency vibrational spectroscopy for the CH3 group of methanol at interfaces due to Fermi resonance, which provides a novel and untraditional point of view with respect to traditional approaches.
Collapse
Affiliation(s)
- Ren-Hui Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing, 100190, P. R. China
| | - Wen-Mei Wei
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| |
Collapse
|
13
|
Wagner JC, Hunter KM, Paesani F, Xiong W. Water Capture Mechanisms at Zeolitic Imidazolate Framework Interfaces. J Am Chem Soc 2021; 143:21189-21194. [PMID: 34878776 DOI: 10.1021/jacs.1c09097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water capture mechanisms of zeolitic imidazolate framework ZIF-90 are revealed by differentiating the water clustering and the center pore filling step, using vibrational sum-frequency generation spectroscopy (VSFG) at a one-micron spatial resolution and state-of-the-art molecular dynamics (MD) simulations. Through spectral line shape comparison between VSFG and IR spectra, the relative humidity dependence of VSFG intensity, and MD simulations, based on MB-pol, we found water clustering and center pore filling happen nearly simultaneously within each pore, with water filling the other pores sequentially. The integration of nonlinear optics with MD simulations provides critical mechanistic insights into the pore filling mechanism and suggests that the relative strength of the hydrogen bonds governs the water uptake mechanisms. This molecular-level detailed mechanism can inform the rational optimization of metal-organic frameworks for water harvesting.
Collapse
Affiliation(s)
- Jackson C Wagner
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Kelly M Hunter
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States.,Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States.,Materials Science and Engineering Program, University of California, San Diego, California 92093, United States.,Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, United States
| |
Collapse
|
14
|
Li B, Li J, Gan W, Tan Y, Yuan Q. Unveiling the Molecular Dynamics in a Living Cell to the Subcellular Organelle Level Using Second-Harmonic Generation Spectroscopy and Microscopy. Anal Chem 2021; 93:14146-14152. [PMID: 34648265 DOI: 10.1021/acs.analchem.1c02604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Second-harmonic generation (SHG) microscopy has been proved to be a powerful method for investigating the structures of biomaterials. SHG spectra were also generally used to probe the adsorption and cross-membrane transport of molecules on lipid bilayers in situ and in real time. In this work, we applied SHG and two-photon fluorescence (TPF) spectra to investigate the dynamics of an amphiphilic ion with an SHG and TPF chromophore, D289 (4-(4-diethylaminostyry)-1-methyl-pyridinium iodide), on the surface of human chronic myelogenous leukemia (K562) cells and the subcellular structures inside the cells. The adsorption and cross-membrane transport of D289 into the cells and then into the organelles such as mitochondria were revealed. SHG images were also recorded and used to demonstrate their capability of probing molecular dynamics in organelles in K562 cells. This work demonstrated the first SHG investigation of the cross-membrane transport dynamics on the surface of subcellular organelles. It may also shed light on the differentiation of different types of subcellular structures in cells.
Collapse
Affiliation(s)
- Bifei Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Also School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Also School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Also School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Also School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| |
Collapse
|
15
|
Zheng RH, Wei WM, Xing T. Herzberg-Teller Effect Predominates in Sum-Frequency Vibrational Spectroscopy of Limonene Chiral Liquids. J Phys Chem B 2020; 124:6642-6650. [PMID: 32649203 DOI: 10.1021/acs.jpcb.0c04519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We theoretically study the bulk sum-frequency vibrational spectroscopy of chiral liquids under the influence of the Franck-Condon, Herzberg-Teller, and nonadiabatic effects. With quantum chemistry computations we calculate the chiral spectra for the R-limonene molecule. When we compare the theoretical and experimental spectra, we find that the Herzberg-Teller effect under the Born-Oppenheimer approximation, instead of the nonadiabatic effect, predominates in the chiral spectra.
Collapse
Affiliation(s)
- Ren-Hui Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, P. R. China
| | - Wen-Mei Wei
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, P. R. China
| | - Tao Xing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, P. R. China
| |
Collapse
|
16
|
Martins-Costa MTC, Ruiz-López MF. Vibrational Sum-Frequency Generation Spectroscopy in the Energy Representation from Dual-Level Molecular Dynamics Simulations. J Phys Chem A 2020; 124:5675-5683. [DOI: 10.1021/acs.jpca.0c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marilia T. C. Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Manuel F. Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
17
|
Bian HT, Guo Y, Wang HF. Non-parabolic potential dependence of optical second harmonic generation from the Si(111) electrode/electrolyte interface. Phys Chem Chem Phys 2018; 20:29539-29548. [DOI: 10.1039/c8cp05621h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We performed potential dependent second harmonic generation (SHG) measurements on the Si(111) electrolyte interface at different azimuthal angles and for different polarization combinations.
Collapse
Affiliation(s)
- Hong-tao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Molecular Reaction Dynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- University of Chinese Academy of Sciences
| | - Hong-fei Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai
- China
| |
Collapse
|
18
|
Wei Q, Zhou D, Bian H. Molecular structure and adsorption of dimethyl sulfoxide at the air/aqueous solution interface probed by non-resonant second harmonic generation. Phys Chem Chem Phys 2018; 20:11758-11767. [DOI: 10.1039/c8cp00099a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, non-resonant second harmonic generation (SHG) was used to investigate the molecular structure and adsorption of DMSO at the air/neat DMSO liquid and air/DMSO aqueous solution interfaces.
Collapse
Affiliation(s)
- Qianshun Wei
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an
- China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an
- China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an
- China
| |
Collapse
|
19
|
DelloStritto M, Sofo J. Bond Polarizability Model for Sum Frequency Generation at the Al2O3(0001)–H2O Interface. J Phys Chem A 2017; 121:3045-3055. [DOI: 10.1021/acs.jpca.7b00862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark DelloStritto
- Department of Physics, The Pennsylvania State University, 104 Davey Lab, University
Park, Pennsylvania 16802-6300, United States
| | - Jorge Sofo
- Department of Physics, The Pennsylvania State University, 104 Davey Lab, University
Park, Pennsylvania 16802-6300, United States
| |
Collapse
|
20
|
Zhang LB, Fang H, Chen SL, Zhu XF, Gan W. Orientation Angle of Molecules at Hexadecane-Water Interface Studied with Total Internal Reflection Second Harmonic Generation. CHINESE J CHEM PHYS 2016. [DOI: 10.1063/1674-0068/29/cjcp1605111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Lu X, Zhang C, Ulrich N, Xiao M, Ma YH, Chen Z. Studying Polymer Surfaces and Interfaces with Sum Frequency Generation Vibrational Spectroscopy. Anal Chem 2016; 89:466-489. [DOI: 10.1021/acs.analchem.6b04320] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaolin Lu
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, Jiangsu Province, P. R. China
| | - Chi Zhang
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Nathan Ulrich
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Minyu Xiao
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Yong-Hao Ma
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, Jiangsu Province, P. R. China
| | - Zhan Chen
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Wei F, Xia WX, Hu ZJ, Li WH, Zhang JY, Zheng WQ. Laser Linewidth and Spectral Resolution in Infrared Scanning Sum Frequency Generation Vibrational Spectroscopy System. CHINESE J CHEM PHYS 2016. [DOI: 10.1063/1674-0068/29/cjcp1601001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
23
|
Chen SL, Fu L, Gan W, Wang HF. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy. J Chem Phys 2016; 144:034704. [DOI: 10.1063/1.4940145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shun-Li Chen
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Wei Gan
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hong-Fei Wang
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
24
|
Wang M, Li B, Chen Z, Lu X. Molecular-level structures at poly(4-vinyl pyridine)/acid interfaces probed by nonlinear vibrational spectroscopy. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mingcong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Bolin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Zhan Chen
- Department of Chemistry; University of Michigan, 930 North University Avenue; Ann Arbor Michigan 48109
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| |
Collapse
|
25
|
Wang HF, Velarde L, Gan W, Fu L. Quantitative Sum-Frequency Generation Vibrational Spectroscopy of Molecular Surfaces and Interfaces: Lineshape, Polarization, and Orientation. Annu Rev Phys Chem 2015; 66:189-216. [DOI: 10.1146/annurev-physchem-040214-121322] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hong-Fei Wang
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Luis Velarde
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260
| | - Wei Gan
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352;
| |
Collapse
|
26
|
Effects of single-source multiple beam interference in vibrational sum frequency generation spectroscopy. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.12.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Zheng RH, Wei WM, Shi Q. Theoretical investigation of quadrupole contributions to surface sum-frequency vibrational spectroscopy. Phys Chem Chem Phys 2015; 17:9068-73. [DOI: 10.1039/c4cp05347h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present a new method of calculating quadrupole contributions to surface sum-frequency vibrational spectroscopy.
Collapse
Affiliation(s)
- Ren-hui Zheng
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Wen-mei Wei
- Department of Chemistry
- College of Basic Medicine
- Anhui Medical University
- Hefei
- P. R. China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
28
|
Feng RR, Guo Y, Wang HF. Reorientation of the “free OH” group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy. J Chem Phys 2014; 141:18C507. [PMID: 25399172 DOI: 10.1063/1.4895561] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ran-Ran Feng
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Fei Wang
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
29
|
Velarde L, Wang HF. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS). Phys Chem Chem Phys 2014; 15:19970-84. [PMID: 24076622 DOI: 10.1039/c3cp52577e] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The lack of understanding of the temporal effects and the restricted ability to control experimental conditions in order to obtain intrinsic spectral lineshapes in surface sum-frequency generation vibrational spectroscopy (SFG-VS) have limited its applications in surface and interfacial studies. The emergence of high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS) with sub-wavenumber resolution [Velarde et al., J. Chem. Phys., 2011, 135, 241102] offers new opportunities for obtaining and understanding the spectral lineshapes and temporal effects in SFG-VS. Particularly, the high accuracy of the HR-BB-SFG-VS experimental lineshape provides detailed information on the complex coherent vibrational dynamics through direct spectral measurements. Here we present a unified formalism for the theoretical and experimental routes for obtaining an accurate lineshape of the SFG response. Then, we present a detailed analysis of a cholesterol monolayer at the air/water interface with higher and lower resolution SFG spectra along with their temporal response. With higher spectral resolution and accurate vibrational spectral lineshapes, it is shown that the parameters of the experimental SFG spectra can be used both to understand and to quantitatively reproduce the temporal effects in lower resolution SFG measurements. This perspective provides not only a unified picture but also a novel experimental approach to measuring and understanding the frequency-domain and time-domain SFG response of a complex molecular interface.
Collapse
Affiliation(s)
- Luis Velarde
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99352, USA.
| | | |
Collapse
|
30
|
Liu S, Fourkas JT. Orientational Time Correlation Functions for Vibrational Sum-Frequency Generation. 2. Propionitrile. J Phys Chem B 2014; 118:8406-19. [DOI: 10.1021/jp502847f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shule Liu
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - John T. Fourkas
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Institute
for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Maryland
NanoCenter, University of Maryland, College Park, Maryland 20742, United States
- Center
for Nanophysics and Advanced Materials, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
31
|
Zheng RH, Wei WM, Liu H, Jing YY, Wang BY, Shi Q. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface. J Chem Phys 2014; 140:104702. [PMID: 24628191 DOI: 10.1063/1.4867575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution when the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed.
Collapse
Affiliation(s)
- Ren-Hui Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, People's Republic of China
| | - Wen-Mei Wei
- Department of Chemistry, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Hao Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, People's Republic of China
| | - Yuan-Yuan Jing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, People's Republic of China
| | - Bo-Yang Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, People's Republic of China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, People's Republic of China
| |
Collapse
|
32
|
Covert PA, Jena KC, Hore DK. Throwing Salt into the Mix: Altering Interfacial Water Structure by Electrolyte Addition. J Phys Chem Lett 2014; 5:143-8. [PMID: 26276194 DOI: 10.1021/jz402052s] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Interfacial water commonly distinguishes itself from the bulk phase by adopting a polar, ordered structure. It is well-established that electrolytes can act to perturb this structure; however, the nature of this perturbation remains a topic of interest. In this study, surface- and structure-sensitive nonlinear vibrational spectroscopy is used to monitor electrolyte-induced changes in interfacial water structure. Solution ionic strength was varied over 5 orders of magnitude, and spectra were collected from two mineral surfaces (fused silica and calcium fluoride) and two polymer surfaces (polystyrene and poly(methyl methacrylate)). Analysis of the spectra reveals striking similarities and differences between these four aqueous interfaces; trends in overall intensity do not always follow changes in the spectral shape. Our results reveal the complex interplay between surface charge, ion adsorption, and hydrophobicity in determining interfacial water structure in the presence of dissolved ions.
Collapse
Affiliation(s)
- Paul A Covert
- Department of Chemistry, University of Victoria, Victoria, Canada
| | - Kailash C Jena
- Department of Chemistry, University of Victoria, Victoria, Canada
| | - Dennis K Hore
- Department of Chemistry, University of Victoria, Victoria, Canada
| |
Collapse
|
33
|
Unique determination of the –CN group tilt angle in Langmuir monolayers using sum-frequency polarization null angle and phase. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.07.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Laaser JE, Zanni MT. Extracting Structural Information from the Polarization Dependence of One- and Two-Dimensional Sum Frequency Generation Spectra. J Phys Chem A 2012; 117:5875-90. [DOI: 10.1021/jp307721y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jennifer E. Laaser
- University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
35
|
Fiebig M. Phase engineering in oxides by interfaces. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:4972-4988. [PMID: 22987039 DOI: 10.1098/rsta.2012.0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Optical second harmonic generation and piezoresponse force microscopy are used to investigate manifestations of ordered states directly related to the presence of an oxide interface. Three examples, each with a very different scope, are reviewed in order to highlight the richness of interface-related phenomena in oxides. (i) The orbital states involved in the emergence of an interfacial conducting state in LaAlO(3)/SrTiO(3) heterostructures are investigated, which reveal a surprising decoupling of orbital and transport properties; (ii) the distribution of ferroelectric and antiferromagnetic domains in epitaxial films of the multiferroic hexagonal manganites is investigated, which reveals striking differences to the corresponding bulk crystals; and (iii) the distribution of trimerization-polarization domains in the hexagonal manganites is investigated, which reveals the presence of topologically protected domain walls with properties different from the bulk.
Collapse
|
36
|
Liu S, Fourkas JT. Orientational Time Correlation Functions for Vibrational Sum-Frequency Generation. 1. Acetonitrile. J Phys Chem A 2012; 117:5853-64. [DOI: 10.1021/jp306296s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shule Liu
- Department of Chemistry & Biochemistry, ‡Institute for Physical Science and Technology, §Maryland NanoCenter, and ∥Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, United States
| | - John T. Fourkas
- Department of Chemistry & Biochemistry, ‡Institute for Physical Science and Technology, §Maryland NanoCenter, and ∥Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
37
|
Zhang Z, Guo Y. Interfacial Water Structure in Langmuir Monolayer and Gibbs Layer Probed by Sum Frequency Generation Vibrational Spectroscopy. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
38
|
Velarde L, Zhang XY, Lu Z, Joly AG, Wang Z, Wang HF. Communication: Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: Resolving interfacial inhomogeneities of “identical” molecular groups. J Chem Phys 2011; 135:241102. [DOI: 10.1063/1.3675629] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
39
|
Rivera CA, Fourkas JT. Reexamining the interpretation of vibrational sum-frequency generation spectra. INT REV PHYS CHEM 2011. [DOI: 10.1080/0144235x.2011.641263] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Jena KC, Hung KK, Schwantje TR, Hore DK. Methyl groups at dielectric and metal surfaces studied by sum-frequency generation in co- and counter-propagating configurations. J Chem Phys 2011; 135:044704. [DOI: 10.1063/1.3614498] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Feng RR, Guo Y, Lü R, Velarde L, Wang HF. Consistency in the Sum Frequency Generation Intensity and Phase Vibrational Spectra of the Air/Neat Water Interface. J Phys Chem A 2011; 115:6015-27. [DOI: 10.1021/jp110404h] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ran-ran Feng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Lü
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Luis Velarde
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Hong-fei Wang
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
42
|
Probing polymer surfaces and interfaces using sum frequency generation vibrational spectroscopy - a powerful nonlinear optical technique. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11458-010-0220-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Ito M, Noguchi H, Ikeda K, Uosaki K. Substrate dependent structure of adsorbed aryl isocyanides studied by sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 2010; 12:3156-63. [DOI: 10.1039/b920411c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Wei F, Xu YY, Guo Y, Liu SL, Wang HF. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach. CHINESE J CHEM PHYS 2009. [DOI: 10.1088/1674-0068/22/06/592-600] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Bian HT, Feng RR, Guo Y, Wang HF. Specific Na+ and K+ cation effects on the interfacial water molecules at the air/aqueous salt solution interfaces probed with nonresonant second harmonic generation. J Chem Phys 2009; 130:134709. [DOI: 10.1063/1.3104609] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Wang F, Huang Z, Cui ZF, Wang HF. Absolute Orientation of Molecules with Competing Hydrophilic Head Groups at the Air/Water Interface Probed with Sum Frequency Generation Vibrational Spectroscopy. CHINESE J CHEM PHYS 2009. [DOI: 10.1088/1674-0068/22/02/197-203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Pluchery O, Humbert C, Valamanesh M, Lacaze E, Busson B. Enhanced detection of thiophenol adsorbed on gold nanoparticles by SFG and DFG nonlinear optical spectroscopy. Phys Chem Chem Phys 2009; 11:7729-37. [DOI: 10.1039/b902142f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|