1
|
Yang Y, Zhang Y, Yang Y, Xu X. Assessment of electron-proton correlation functionals for vibrational spectra of shared-proton systems by constrained nuclear-electronic orbital density functional theory. J Chem Phys 2024; 161:244103. [PMID: 39713995 DOI: 10.1063/5.0243086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024] Open
Abstract
Proton transfer plays a crucial role in various chemical and biological processes. A major theoretical challenge in simulating proton transfer arises from the quantum nature of the proton. The constrained nuclear-electronic orbital (CNEO) framework was recently developed to efficiently and accurately account for nuclear quantum effects, particularly quantum nuclear delocalization effects, in quantum chemistry calculations and molecular dynamics simulations. In this paper, we systematically investigate challenging proton transfer modes in a series of shared-proton systems using CNEO density functional theory (CNEO-DFT), focusing on evaluating existing electron-proton correlation functionals. Our results show that CNEO-DFT accurately describes proton transfer vibrational modes and significantly outperforms conventional DFT. The inclusion of the epc17-2 electron-proton correlation functional in CNEO-DFT produces similar performance to that without electron-proton correlations, while the epc17-1 functional yields less accurate results, comparable with conventional DFT. These findings hold true for both asymmetrical and symmetrical shared-proton systems. Therefore, until a more accurate electron-proton correlation functional is developed, we currently recommend performing vibrational spectrum calculations using CNEO-DFT without electron-proton correlation functionals.
Collapse
Affiliation(s)
- Yuzhuo Yang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yuzhe Zhang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xi Xu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
2
|
Sakaguchi S, Ohshima Y, Yamazaki M. Atomic momentum distributions in polyatomic molecules in rotational-vibrational eigenstates. J Chem Phys 2024; 161:094105. [PMID: 39230382 DOI: 10.1063/5.0222671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
We report a quantum mechanical method for calculating the momentum distributions of constituent atoms of polyatomic molecules in rotational-vibrational eigenstates. Application of the present theory to triatomic molecules in the rovibrational ground state revealed that oscillatory changes appear on the proton momentum distribution in the nonlinear H2O molecule, while no such modulation is present in the case of an oxygen atom in the linear CO2 molecule. The atomic momentum distributions were analyzed in detail by means of a rigid rotor model, and it was found that the oscillation originates from the quantum-mechanical delocalization of the target atom with respect to the other atoms.
Collapse
Affiliation(s)
- Sota Sakaguchi
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasuhiro Ohshima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masakazu Yamazaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
3
|
Chu W, Tan S, Zheng Q, Fang W, Feng Y, Prezhdo OV, Wang B, Li XZ, Zhao J. Ultrafast charge transfer coupled to quantum proton motion at molecule/metal oxide interface. SCIENCE ADVANCES 2022; 8:eabo2675. [PMID: 35714193 PMCID: PMC11581126 DOI: 10.1126/sciadv.abo2675] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Understanding how the nuclear quantum effects (NQEs) in the hydrogen bond (H-bond) network influence the photoexcited charge transfer at semiconductor/molecule interface is a challenging problem. By combining two kinds of emerging molecular dynamics methods at the ab initio level, the path integral-based molecular dynamics and time-dependent nonadiabatic molecular dynamics, and choosing CH3OH/TiO2 as a prototypical system to study, we find that the quantum proton motion in the H-bond network is strongly coupled with the ultrafast photoexcited charge dynamics at the interface. The hole trapping ability of the adsorbed methanol molecule is notably enhanced by the NQEs, and thus, it behaves as a hole scavenger on titanium dioxide. The critical role of the H-bond network is confirmed by in situ scanning tunneling microscope measurements with ultraviolet light illumination. It is concluded the quantum proton motion in the H-bond network plays a critical role in influencing the energy conversion efficiency based on photoexcitation.
Collapse
Affiliation(s)
- Weibin Chu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, People’s Republic of China
| | - Shijing Tan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Qijing Zheng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Wei Fang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Department of Chemistry, Fudan University, Shanghai 200438, People’s Republic of China
- Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Yexin Feng
- School of Physics and Electronics, Hunan University, Changsha 410082, People’s Republic of China
| | - Oleg V. Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Bing Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Xin-Zheng Li
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People’s Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, People’s Republic of China
| | - Jin Zhao
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Hefei National Laboratory, Hefei 230088, People’s Republic of China
| |
Collapse
|
4
|
Han E, Fang W, Stamatakis M, Richardson JO, Chen J. Quantum Tunnelling Driven H 2 Formation on Graphene. J Phys Chem Lett 2022; 13:3173-3181. [PMID: 35362977 DOI: 10.1021/acs.jpclett.2c00520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is commonly believed that it is unfavorable for adsorbed H atoms on carbonaceous surfaces to form H2 without the help of incident H atoms. Using ring-polymer instanton theory to describe multidimensional tunnelling effects, combined with ab initio electronic structure calculations, we find that these quantum-mechanical simulations reveal a qualitatively different picture. Recombination of adsorbed H atoms, which was believed to be irrelevant at low temperature due to high barriers, is enabled by deep tunnelling, with reaction rates enhanced by tens of orders of magnitude. Furthermore, we identify a new path for H recombination that proceeds via multidimensional tunnelling but would have been predicted to be unfeasible by a simple one-dimensional description of the reaction. The results suggest that hydrogen molecule formation at low temperatures are rather fast processes that should not be ignored in experimental settings and natural environments with graphene, graphite, and other planar carbon segments.
Collapse
Affiliation(s)
- Erxun Han
- School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, People's Republic of China
| | - Wei Fang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Department of Chemistry, Fudan University, Shanghai 200438, China
- Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | | | - Ji Chen
- School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, People's Republic of China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
| |
Collapse
|
5
|
Bünermann O, Kandratsenka A, Wodtke AM. Inelastic Scattering of H Atoms from Surfaces. J Phys Chem A 2021; 125:3059-3076. [PMID: 33779163 PMCID: PMC8154602 DOI: 10.1021/acs.jpca.1c00361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/09/2021] [Indexed: 11/29/2022]
Abstract
We have developed an instrument that uses photolysis of hydrogen halides to produce nearly monoenergetic hydrogen atom beams and Rydberg atom tagging to obtain accurate angle-resolved time-of-flight distributions of atoms scattered from surfaces. The surfaces are prepared under strict ultrahigh vacuum conditions. Data from these experiments can provide excellent benchmarks for theory, from which it is possible to obtain an atomic scale understanding of the underlying dynamical processes governing H atom adsorption. In this way, the mechanism of adsorption on metals is revealed, showing a penetration-resurfacing mechanism that relies on electronic excitation of the metal by the H atom to succeed. Contrasting this, when H atoms collide at graphene surfaces, the dynamics of bond formation involving at least four carbon atoms govern adsorption. Future perspectives of H atom scattering from surfaces are also outlined.
Collapse
Affiliation(s)
- Oliver Bünermann
- Institute
for Physical Chemistry, Georg-August-University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
- Department
of Dynamics at Surfaces, Max-Planck Institute
for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Alexander Kandratsenka
- Department
of Dynamics at Surfaces, Max-Planck Institute
for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Alec M. Wodtke
- Institute
for Physical Chemistry, Georg-August-University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
- Department
of Dynamics at Surfaces, Max-Planck Institute
for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Litman Y, Rossi M. Multidimensional Hydrogen Tunneling in Supported Molecular Switches: The Role of Surface Interactions. PHYSICAL REVIEW LETTERS 2020; 125:216001. [PMID: 33275002 DOI: 10.1103/physrevlett.125.216001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
The nuclear tunneling crossover temperature (T_{c}) of hydrogen transfer reactions in supported molecular-switch architectures can lie close to room temperature. This calls for the inclusion of nuclear quantum effects (NQEs) in the calculation of reaction rates even at high temperatures. However, computations of NQEs relying on standard parametrized dimensionality-reduced models quickly become inadequate in these environments. In this Letter, we study the paradigmatic molecular switch based on porphycene molecules adsorbed on metallic surfaces with full-dimensional calculations that combine density-functional theory for the electrons with the semiclassical ring-polymer instanton approximation for the nuclei. We show that the double intramolecular hydrogen transfer (DHT) rate can be enhanced by orders of magnitude due to surface fluctuations in the deep-tunneling regime. We also explain the origin of an Arrhenius temperature dependence of the rate below T_{c} and why this dependence differs at different surfaces. We propose a simple model to rationalize the temperature dependence of DHT rates spanning diverse fcc [110] surfaces.
Collapse
Affiliation(s)
- Yair Litman
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany and Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Mariana Rossi
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany and MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
7
|
Guo J, Zhou L, Zen A, Michaelides A, Wu X, Wang E, Xu L, Chen J. Hydration of NH_{4}^{+} in Water: Bifurcated Hydrogen Bonding Structures and Fast Rotational Dynamics. PHYSICAL REVIEW LETTERS 2020; 125:106001. [PMID: 32955332 DOI: 10.1103/physrevlett.125.106001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Understanding the hydration and diffusion of ions in water at the molecular level is a topic of widespread importance. The ammonium ion (NH_{4}^{+}) is an exemplar system that has received attention for decades because of its complex hydration structure and relevance in industry. Here we report a study of the hydration and the rotational diffusion of NH_{4}^{+} in water using ab initio molecular dynamics simulations and quantum Monte Carlo calculations. We find that the hydration structure of NH_{4}^{+} features bifurcated hydrogen bonds, which leads to a rotational mechanism involving the simultaneous switching of a pair of bifurcated hydrogen bonds. The proposed hydration structure and rotational mechanism are supported by existing experimental measurements, and they also help to rationalize the measured fast rotation of NH_{4}^{+} in water. This study highlights how subtle changes in the electronic structure of hydrogen bonds impacts the hydration structure, which consequently affects the dynamics of ions and molecules in hydrogen bonded systems.
Collapse
Affiliation(s)
- Jianqing Guo
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
- School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Liying Zhou
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
- School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Andrea Zen
- Department of Physics and Astronomy, Thomas Young Centre and London Centre for Nanotechnology University College London, Gower Street, London WC1E 6BT, United Kingdom
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Angelos Michaelides
- Department of Physics and Astronomy, Thomas Young Centre and London Centre for Nanotechnology University College London, Gower Street, London WC1E 6BT, United Kingdom
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Xifan Wu
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Enge Wang
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
- School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
- Songshan Lake Materials Lab, Institute of Physics, Chinese Academy of Sciences, Guangdong 523808, People's Republic of China
- School of Physics, Liaoning University, Shenyang 110136, People's Republic of China
| | - Limei Xu
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
- School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
| | - Ji Chen
- School of Physics, Peking University, Beijing 100871, People's Republic of China
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
| |
Collapse
|
8
|
Wang L, Ceriotti M, Markland TE. Quantum kinetic energy and isotope fractionation in aqueous ionic solutions. Phys Chem Chem Phys 2020; 22:10490-10499. [PMID: 31942581 DOI: 10.1039/c9cp06483d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At room temperature, the quantum contribution to the kinetic energy of a water molecule exceeds the classical contribution by an order of magnitude. The quantum kinetic energy (QKE) of a water molecule is modulated by its local chemical environment and leads to uneven partitioning of isotopes between different phases in thermal equilibrium, which would not occur if the nuclei behaved classically. In this work, we use ab initio path integral simulations to show that QKEs of the water molecules and the equilibrium isotope fractionation ratios of the oxygen and hydrogen isotopes are sensitive probes of the hydrogen bonding structures in aqueous ionic solutions. In particular, we demonstrate how the QKE of water molecules in path integral simulations can be decomposed into translational, rotational and vibrational degrees of freedom, and use them to determine the impact of solvation on different molecular motions. By analyzing the QKEs and isotope fractionation ratios, we show how the addition of the Na+, Cl- and HPO42- ions perturbs the competition between quantum effects in liquid water and impacts their local solvation structures.
Collapse
Affiliation(s)
- Lu Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
9
|
Jiang X, Zheng Y, Xue XX, Dai J, Feng Y. Ab initio study of the miscibility for solid hydrogen-helium mixtures at high pressure. J Chem Phys 2020; 152:074701. [PMID: 32087670 DOI: 10.1063/1.5138253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding the behavior of H2-He binary mixtures at high pressure is of great importance. Two more recent experiments [J. Lim and C. S. Yoo, Phys. Rev. Lett. 120, 165301 (2018) and R. Turnbull et al., ibid. 121, 195702 (2018)] are in conflict, regarding the miscibility between H2 and He in solids at high pressure. On the basis of first-principles calculations combined with the structure prediction method, we investigate the miscibility for solid H2-He mixtures at pressures from 0 GPa to 200 GPa. It is found that there is no sign of miscibility and chemical reactivity in H2-He mixtures with any H:He ratio. Moreover, instead of H2-He mixtures, the calculated Raman modes of the N-H mixtures can better explain the characteristic peaks observed experimentally, which were claimed to be the H-He vibrational modes. These calculation results are more in line with the experimental findings by Turnbull et al. [Phys. Rev. Lett. 121, 195702 (2018)].
Collapse
Affiliation(s)
- Xingxing Jiang
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yueshao Zheng
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiong-Xiong Xue
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiayu Dai
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| | - Yexin Feng
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Sakaushi K, Kumeda T, Hammes-Schiffer S, Melander MM, Sugino O. Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Phys Chem Chem Phys 2020; 22:19401-19442. [DOI: 10.1039/d0cp02741c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding microscopic mechanism of multi-electron multi-proton transfer reactions at complexed systems is important for advancing electrochemistry-oriented science in the 21st century.
Collapse
Affiliation(s)
- Ken Sakaushi
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | - Tomoaki Kumeda
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | | | - Marko M. Melander
- Nanoscience Center
- Department of Chemistry
- University of Jyväskylä
- Jyväskylä
- Finland
| | - Osamu Sugino
- The Institute of Solid State Physics
- the University of Tokyo
- Chiba 277-8581
- Japan
| |
Collapse
|
11
|
Kapil V, Engel E, Rossi M, Ceriotti M. Assessment of Approximate Methods for Anharmonic Free Energies. J Chem Theory Comput 2019; 15:5845-5857. [DOI: 10.1021/acs.jctc.9b00596] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Venkat Kapil
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Edgar Engel
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Mariana Rossi
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|