1
|
Cho-Clark M, Larco DO, Zahn BR, Mani SK, Wu TJ. GnRH-(1-5) activates matrix metallopeptidase-9 to release epidermal growth factor and promote cellular invasion. Mol Cell Endocrinol 2015; 415:114-25. [PMID: 26277400 DOI: 10.1016/j.mce.2015.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/29/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
Abstract
In the extracellular space, the gonadotropin-releasing hormone (GnRH) is metabolized by the zinc metalloendopeptidase EC3.4.24.15 (EP24.15) to form the pentapeptide, GnRH-(1-5). GnRH-(1-5) diverges in function and mechanism of action from GnRH in the brain and periphery. GnRH-(1-5) acts on the orphan G protein-coupled receptor 101 (GPR101) to sequentially stimulate epidermal growth factor (EGF) release, phosphorylate the EGF receptor (EGFR), and facilitate cellular migration. These GnRH-(1-5) actions are dependent on matrix metallopeptidase (MMP) activity. Here, we demonstrated that these GnRH-(1-5) effects are dependent on increased MMP-9 enzymatic activity in the Ishikawa and ECC-1 cell lines. Furthermore, the effects of GnRH-(1-5) mediated by GPR101 and the subsequent increase in MMP-9 enzymatic activity lead to an increase in cellular invasion. These results suggest that GnRH-(1-5) and GPR101 regulation of MMP-9 may have physiological relevance in the metastatic potential of endometrial cancer cells.
Collapse
Affiliation(s)
- Madelaine Cho-Clark
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Darwin O Larco
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Brian R Zahn
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Shaila K Mani
- Departments of Molecular & Cellular Biology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - T John Wu
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
2
|
Stebbing J, Lit LC, Zhang H, Darrington RS, Melaiu O, Rudraraju B, Giamas G. The regulatory roles of phosphatases in cancer. Oncogene 2014; 33:939-53. [PMID: 23503460 DOI: 10.1038/onc.2013.80] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/01/2013] [Indexed: 02/06/2023]
Abstract
The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3-kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies.
Collapse
Affiliation(s)
- J Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - L C Lit
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - H Zhang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - R S Darrington
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - O Melaiu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - B Rudraraju
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - G Giamas
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
3
|
Haudek VJ, Gundacker NC, Slany A, Wimmer H, Bayer E, Pablé K, Gerner C. Consequences of Acute and Chronic Oxidative Stress upon the Expression Pattern of Proteins in Peripheral Blood Mononuclear Cells. J Proteome Res 2008; 7:5138-47. [DOI: 10.1021/pr800438f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Verena J. Haudek
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria, Section Biomedical Laboratory Science, University of Applied Science, Vienna, Austria, and Austrian Research Center Seibersdorf, Vienna, Austria
| | - Nina C. Gundacker
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria, Section Biomedical Laboratory Science, University of Applied Science, Vienna, Austria, and Austrian Research Center Seibersdorf, Vienna, Austria
| | - Astrid Slany
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria, Section Biomedical Laboratory Science, University of Applied Science, Vienna, Austria, and Austrian Research Center Seibersdorf, Vienna, Austria
| | - Helge Wimmer
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria, Section Biomedical Laboratory Science, University of Applied Science, Vienna, Austria, and Austrian Research Center Seibersdorf, Vienna, Austria
| | - Editha Bayer
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria, Section Biomedical Laboratory Science, University of Applied Science, Vienna, Austria, and Austrian Research Center Seibersdorf, Vienna, Austria
| | - Karoline Pablé
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria, Section Biomedical Laboratory Science, University of Applied Science, Vienna, Austria, and Austrian Research Center Seibersdorf, Vienna, Austria
| | - Christopher Gerner
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria, Section Biomedical Laboratory Science, University of Applied Science, Vienna, Austria, and Austrian Research Center Seibersdorf, Vienna, Austria
| |
Collapse
|
4
|
Barr RK, Lynn HE, Moretti PAB, Khew-Goodall Y, Pitson SM. Deactivation of sphingosine kinase 1 by protein phosphatase 2A. J Biol Chem 2008; 283:34994-5002. [PMID: 18852266 DOI: 10.1074/jbc.m804658200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine kinase 1 (SK1) is an important regulator of cellular signaling that has been implicated in a broad range of cellular processes. Cell exposure to a wide array of growth factors, cytokines, and other cell agonists can result in a rapid and transient increase in SK activity via an activating phosphorylation. We have previously identified extracellular signal-regulated kinases 1 and 2 (ERK1/2) as the kinases responsible for the phosphorylation of human SK1 at Ser(225), but the corresponding phosphatase targeting this phosphorylation has remained undefined. Here, we provide data to support a role for protein phosphatase 2A (PP2A) in the deactivation of SK1 through dephosphorylation of phospho-Ser(225). The catalytic subunit of PP2A (PP2Ac) was found to interact with SK1 using both GST-pulldown and coimmunoprecipitation analyses. Coexpression of PP2Ac with SK1 resulted in reduced Ser(225) phosphorylation of SK1 in human embryonic kidney (HEK293) cells. In vitro phosphatase assays showed that PP2Ac dephosphorylated both recombinant SK1 and a phosphopeptide based on the phospho-Ser(225) region of SK1. Finally, both basal and tumor necrosis factor-alpha-stimulated cellular SK1 activity were regulated by molecular manipulation of PP2Ac activity. Thus, PP2A appears to function as an endogenous regulator of SK1 phosphorylation.
Collapse
Affiliation(s)
- Renae K Barr
- Hanson Institute, Division of Human Immunology, Institute of Medical and Veterinary Science, University of Adelaide, Adelaide, Australia
| | | | | | | | | |
Collapse
|
5
|
So WK, Cheng JC, Poon SL, Leung PCK. Gonadotropin-releasing hormone and ovarian cancer: a functional and mechanistic overview. FEBS J 2008; 275:5496-511. [DOI: 10.1111/j.1742-4658.2008.06679.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Knollman PE, Conn PM. Multiple G proteins compete for binding with the human gonadotropin releasing hormone receptor. Arch Biochem Biophys 2008; 477:92-7. [PMID: 18541137 DOI: 10.1016/j.abb.2008.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/13/2008] [Accepted: 05/18/2008] [Indexed: 01/05/2023]
Abstract
The GnRH receptor is coupled to G proteins of the families G(q) and G(11). G(q) and G(11) coupling leads to intracellular signaling through the phospholipase C pathway. GnRHR coupling to other G proteins is controversial. This study provides evidence that G protein families G(s), G(i), G(q) and G(11) complete for binding with the GnRHR. We quantified interactions of over-expressed G proteins with GnRHR by a competitive binding approach, using measurements of second messengers, IP and cAMP. Transient co-transfection of HEK293 cells with human WT GnRHR and with stimulatory and inhibitory G proteins (G(q), G(11) and G(s), G(i)) led to either production or inhibition of total inositol phosphate (IP) production, depending on the G protein that was over-expressed. Studies were conducted in different human (COS7, HeLa) and rodent-derived (CHO-K1, GH(3)) cell lines in order to confirm that G protein promiscuity observed with the GnRHR was not limited to a particular cell type.
Collapse
Affiliation(s)
- Paul E Knollman
- Divisions of Neuroscience and Reproductive Biology, ONPRC/OHSU, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | | |
Collapse
|
7
|
Fister S, Günthert AR, Emons G, Gründker C. Gonadotropin-releasing hormone type II antagonists induce apoptotic cell death in human endometrial and ovarian cancer cells in vitro and in vivo. Cancer Res 2007; 67:1750-6. [PMID: 17308117 DOI: 10.1158/0008-5472.can-06-3222] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In human endometrial and ovarian cancers, gonadotropin-releasing hormone type I (GnRH-I), GnRH-II, and their receptors are parts of a negative autocrine regulatory system of cell proliferation. Based on a tumor-specific signal transduction, GnRH-I and GnRH-II agonists inhibit the mitogenic signal transduction of growth factor receptors and related oncogene products associated with tyrosine kinase activity via activation of a phosphotyrosine phosphatase resulting in down-regulation of cancer cell proliferation. Induction of apoptosis is not involved. In this study, we show that treatment of human endometrial and ovarian cancer cells with GnRH-II antagonists results in apoptotic cell death via dose-dependent activation of caspase-3. The antitumor effects of the GnRH-II antagonists could be confirmed in nude mice. GnRH-II antagonists inhibited the growth of xenotransplants of human endometrial and ovarian cancers in nude mice significantly, without any apparent side effects. Thus, GnRH-II antagonists seem to be suitable drugs for an efficacious and less toxic endocrine therapy for endometrial and ovarian cancers.
Collapse
Affiliation(s)
- Stefanie Fister
- Department of Gynecology and Obstetrics, Georg-August-University, Robert-Koch-Street 40, D-37075 Göttingen, Germany
| | | | | | | |
Collapse
|
8
|
Sim ATR, Ludowyke RI, Verrills NM. Mast cell function: regulation of degranulation by serine/threonine phosphatases. Pharmacol Ther 2006; 112:425-39. [PMID: 16790278 DOI: 10.1016/j.pharmthera.2006.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 04/26/2006] [Indexed: 01/28/2023]
Abstract
Mast cells play both effector and modulatory roles in a range of allergic and immune responses. The principal function of these cells is the release of inflammatory mediators from mast cells by degranulation, which involves a complex interplay of signalling molecules. Understanding the molecular architecture underlying mast cell signalling has attracted renewed interest as the capacity for therapeutic intervention through controlling mast cell degranulation is now accepted as a viable proposition. The dynamic regulation of signalling by protein phosphorylation is a well-established phenomenon and many of the early events involved in mast cell activation are well understood. Less well understood however are the events further downstream of receptor activation that allow movement of granules through the cytoskeletal barrier and docking and fusion of granules with the plasma membrane. Whilst a potential role for the protein phosphatase family of signalling enzymes in mast cell function has been accepted for some time, the evidence has largely been derived from the use of broad specificity pharmacological inhibitors and results often depend upon the experimental conditions, leading to conflicting views. In this review, we present and discuss the pharmacological and recent molecular evidence that protein phosphatases, and in particular the protein phosphatase serine/threonine phosphatase type 2A (PP2A), have major regulatory roles to play and may be potential targets for the design of new therapeutic agents.
Collapse
Affiliation(s)
- Alistair T R Sim
- School of Biomedical Sciences and Hunter Medical Research Institute, Faculty of Health, The University of Newcastle, Callaghan, NSW, Australia.
| | | | | |
Collapse
|