1
|
Dastan M, Rajaei Z, Sharifi M, Salehi H. Crocin Improves Cognitive Impairment in LPS-treated Rats through Anti-Apoptotic, Anti-Inflammatory, and Antioxidant Activities. Mol Neurobiol 2025; 62:5804-5815. [PMID: 39630406 DOI: 10.1007/s12035-024-04638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 03/29/2025]
Abstract
Brain inflammation and oxidative stress play critical roles in neuronal apoptosis and memory dysfunction in Alzheimer's disease. Crocin, a natural carotenoid in the stigma of saffron, possesses radical scavenging, anti-inflammatory, and anti-apoptotic properties. This study investigates the protective impact of crocin on neuronal apoptosis, oxidative stress, neuroinflammation, and memory deficits induced by lipopolysaccharide (LPS) in rats. Male Wistar rats received 100 mg/kg of crocin for 12 days, with LPS (1 mg/kg, ip) injected on days 8-12. Spatial learning and memory were evaluated in the Morris water maze two hours after LPS injection. Gene expression of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), caspase 3, and lipid peroxidation was assessed in hippocampal homogenates at the end of the behavioral test. Histopathological changes in the hippocampus and cerebral cortex were evaluated using H&E staining. The results indicated that LPS administration caused spatial learning and memory dysfunction (P = 0.001, P < 0.01) accompanied by upregulation of Nfkb, Tnfα, and Casp3 mRNA expression (P < 0.0001), increased TNF-α (P < 0.01) and lipid peroxidation level (P < 0.01), decreased total thiol concentration (P < 0.05), tissue damage and neuronal loss in the hippocampus (P < 0.0001). Furthermore, crocin treatment at a dosage of 100 mg/kg attenuated learning and memory impairments (P = 0.001, P < 0.01), downregulated Nfkb, Tnfα, and Casp3 mRNA expression (P < 0.0001), decreased TNF-α level (P < 0.01) and lipid peroxidation (P < 0.05) and increased total thiol level (P < 0.05) in the hippocampus. Crocin also ameliorated LPS-induced pathological changes and neuronal loss in the hippocampus (P < 0.001) and cerebral cortex (P < 0.01). In conclusion, the neuroprotective effects of crocin against LPS-induced histopathological and behavioral changes could be attributed to its anti-apoptotic, anti-inflammatory, and radical-scavenging activities in the rat brain.
Collapse
Affiliation(s)
- Maryam Dastan
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Mihaylova A, Doncheva N, Vlasheva M, Katsarova M, Gardjeva P, Dimitrova S, Kostadinov I. Investigation of the Immunomodulatory and Neuroprotective Properties of Nigella sativa Oil in Experimental Systemic and Neuroinflammation. Int J Mol Sci 2025; 26:2235. [PMID: 40076857 PMCID: PMC11900984 DOI: 10.3390/ijms26052235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Nigella sativa (NS) is a promising medicinal plant with diverse therapeutic properties. This study aimed to investigate the impact of NS oil (NSO) on memory functions in rats with LPS (lipopolysaccharide)-induced neuroinflammation, as well as its effect on serum levels of inflammatory cytokines, neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF). Male rats were divided into four groups: control, LPS-control, LPS+NSO 3 and 5 mL/kg. Neuroinflammation was induced by a single intraperitoneal LPS injection (2 mg/kg). The novel object recognition test (NORT) and Y-maze were used for the evaluation of memory processes. Recognition index (RI) and % spontaneous alteration (%SA) were registered, respectively. Blood samples for TNF-α, IL-1β, IL-10, BDNF, and NPY serum levels were taken. Thymoquinone, the active compound of the oil, was detected by high-performance liquid chromatography. NSO administration resulted in an improvement in spatial and episodic memory, as evidenced by increased % SA and RI compared to LPS-control. Treatment with NSO led to a significant reduction in pro-inflammatory cytokines and NPY, along with an increase in IL-10 and BDNF levels, when compared to LPS-control. In conclusion, NSO enhances BDNF production and regulates pro- and anti-inflammatory cytokines release, which probably contributes to the observed cognitive improvement in animals with experimental neuroinflammation.
Collapse
Affiliation(s)
- Anita Mihaylova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria;
| | - Nina Doncheva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria;
| | - Maria Vlasheva
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria; (M.V.); (M.K.)
| | - Mariana Katsarova
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria; (M.V.); (M.K.)
| | - Petya Gardjeva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria;
| | - Stela Dimitrova
- Research Institute, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria;
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria; (M.V.); (M.K.)
| | - Ilia Kostadinov
- Research Institute, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria;
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Aleem M, Khan MI. Concept of dementia ( Nisy ā n) in Unani system of medicine and scientific validation of an important Unani pharmacopoeial preparation ' Majoon Vaj' for its management: a review. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:139-153. [PMID: 37384842 DOI: 10.1515/jcim-2021-0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
OBJECTIVES This review focused on the concept of dementia in the Unani system of medicine and comprehensive, updated information on Majoon Vaj about the phytochemistry, nootropic, CNS activities and provide insights into potential opportunities for future research. METHODS The classical literature on Majoon Vaj for its anti-dementic properties, and therapeutic uses were gathered from nearly thirteen classical Unani books including Unani Pharmacopoeia. The information of pharmacognosy, phytochemical and pharmacological activities of Majoon Vaj and its ingredient was collected by browsing the Internet (PubMed, ScienceDirect, Wiley online library, Google Scholar, ResearchGate). The relevant primary sources were probed, analysed, and included in this review. The keywords used to browse were Majoon Vaj, Dementia, Nootropic, Acorus calamus, Piper nigram, Zingiber officinalis, Nigella sativa, Carum carvi, Plumbago zeylanica, and β-asarone. Relevant Sources were gathered up to July 2021, and the chemical structures were drawn using ACD/ChemSketch software. The species name and synonyms were checked with WFO (2021): World Flora online (http://www.worldfloraonline.org) an updated version of 'The Plant List.' RESULTS Majoon Vaj contains an excess of bioactive compounds e.g., alkaloids, phenols, flavonoids, tannins, diterpenes, coumarins, carbohydrates, and fixed oils and its ingredients possess broad pharmacological properties, including cognitive-enhancing, neuroprotective, anti-inflammatory, antioxidant and antimicrobial properties. CONCLUSIONS The literature of Unani medicine is quite rich in discussing the pathophysiological basis of memory disorders. It argues that memory, retention, and retrieval are regulated by a complex process involving various faculties. Majoon Vaj seems to have great potential for therapeutic applications in the treatment of dementia and thus encourage more preclinical and clinical trials in this field.
Collapse
Affiliation(s)
- Mohd Aleem
- Department of Ilmul Advia (Pharmacology), National Institute of Unani Medicine, Bengaluru, India
| | - Md Imran Khan
- Department of Ilmul Advia (Pharmacology), National Institute of Unani Medicine, Bengaluru, India
| |
Collapse
|
4
|
Darbandi ZK, Amirahmadi S, Goudarzi I, Hosseini M, Rajabian A. Folic acid improved memory and learning function in a rat model of neuroinflammation induced by lipopolysaccharide. Inflammopharmacology 2024; 32:1401-1411. [PMID: 37610560 DOI: 10.1007/s10787-023-01314-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
Folic acid (FA) plays an important role in the maintenance of normal neurological functions such as memory and learning function. Neuroinflammation contributes to the progression of cognitive disorders and Alzheimer's disease. Thus, this study aimed to investigate the effect of FA supplementation on cognitive impairment, oxidative stress, and neuro-inflammation in lipopolysaccharide (LPS)-injured rats. For this purpose, the rats were given FA (5-20 mg/kg/day, oral) for 3 weeks. In the third week, LPS (1 mg/kg/day; intraperitoneal injection) was given before the Morris water maze (MWM) and passive avoidance (PA) tests. Finally, the brains were removed for biochemical assessments. In the MWM test, LPS increased the escape latency and traveled distance to find the platform compared to the control group, whereas all doses of FA decreased them compared to the LPS group. The findings of the probe trial showed that FA increased the traveling time and distance in the target area. LPS impaired the performance of the rats in the PA test. FA increased delay and light time while decreasing the frequency of entry and time in the dark region of PA. LPS increased hippocampal levels of interleukin (IL)-6 and IL-1β. The hippocampal level of malondialdehyde was also increased but thiol content and superoxide dismutase activity were decreased in the LPS group. However, treatment with FA restored the oxidative stress markers along with a reduction in the levels of pro-inflammatory cytokines. In conclusion, FA could ameliorate the memory and learning deficits induced by LPS via normalizing the inflammatory response and oxidative stress markers in the brain.
Collapse
Affiliation(s)
- Zahra Kioumarsi Darbandi
- Department of Animal Biology, School of Biology, Damghan University, Damghan, Iran
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabiheh Amirahmadi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iran Goudarzi
- Department of Animal Biology, School of Biology, Damghan University, Damghan, Iran.
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
5
|
Gilani SJ, Bin Jumah MN, Fatima F, Al-Abbasi FA, Afzal M, Alzarea SI, Sayyed N, Nadeem MS, Kazmi I. Hibiscetin attenuates lipopolysaccharide-evoked memory impairment by inhibiting BDNF/caspase-3/NF-κB pathway in rodents. PeerJ 2024; 12:e16795. [PMID: 38313003 PMCID: PMC10838095 DOI: 10.7717/peerj.16795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
This study explores the neuroprotective potential of hibiscetin concerning memory deficits induced by lipopolysaccharide (LPS) injection in rats. The aim of this study is to evaluate the effect of hibiscetin against LPS-injected memory deficits in rats. The behavioral paradigms were conducted to access LPS-induced memory deficits. Various biochemical parameters such as acetyl-cholinesterase activity, choline-acetyltransferase, antioxidant (superoxide dismutase, glutathione transferase, catalase), oxidative stress (malonaldehyde), and nitric oxide levels were examined. Furthermore, neuroinflammatory parameters such as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, and nuclear factor-kappa B expression and brain-derived neurotrophic factor as well as apoptosis marker i.e., caspase-3 were evaluated. The results demonstrated that the hibiscetin-treated group exhibited significant recovery in LPS-induced memory deficits in rats by using behavioral paradigms, biochemical parameters, antioxidant levels, oxidative stress, neuroinflammatory markers, and apoptosis markers. Recent research suggested that hibiscetin may serve as a promising neuroprotective agent in experimental animals and could offer an alternative in LPS-injected memory deficits in rodent models.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department of Basic Health Sciences, Foundation Year, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - May Nasser Bin Jumah
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Riyadh, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur, Uttar Pradesh, India
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Hosseini A, Ghorbani A, Alavi MS, Forouhi N, Rajabian A, Boroumand-Noughabi S, Sahebkar A, Eid AH. Cardioprotective effect of Sanguisorba minor against isoprenaline-induced myocardial infarction in rats. Front Pharmacol 2023; 14:1305816. [PMID: 38223198 PMCID: PMC10784747 DOI: 10.3389/fphar.2023.1305816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction: Oxidative stress is a major instigator of various cardiovascular diseases, including myocardial infarction (MI). Despite available drugs, there is still an increased need to look for alternative therapies or identify new bioactive compounds. Sanguisorba minor (S. minor) is a native herb characterized by its potent antioxidant activity. This study was designed to evaluate the effect of S. minor against isoprenaline-induced MI. Methods: Rats were treated with the hydro-ethanolic extract of the aerial parts of S. minor at doses of 100 or 300 mg/kg orally for 9 days. Isoprenaline was injected subcutaneously at the dose of 85 mg/kg on days 8 and 9. Then, the activities of various cardiac injury markers including cardiac troponin (cTnT), lactate dehydrogenase (LDH), creatinine kinase muscle brain (CK-MB), creatinine phosphokinase (CPK), and antioxidant enzymes in serum were determined. Malondialdehyde (MDA) and thiol content were measured in cardiac tissue, and histopathological analysis was conducted. Results: Our results show that isoprenaline increased the serum levels of cTnT, LDH, CK-MB, and CPK (p < 0.001) and elevated MDA levels (p < 0.001) in cardiac tissue. Isoprenaline also reduced superoxide dismutase (SOD), catalase, and thiol content (p < 0.001). Importantly, the extract abolished isoprenaline-induced MI by elevating SOD and catalase (p < 0.001), reducing levels of MDA, and diminishing levels of cTnT, LDH, CK-MB, and CPK cardiac markers (p < 0.001). Histopathological studies of the cardiac tissue showed isoprenaline-induced injury that was significantly attenuated by the extract. Conclusion: Our results suggest that S. minor could abrogate isoprenaline-induced cardiac toxicity due to its ability to mitigate oxidative stress.
Collapse
Affiliation(s)
- Azar Hosseini
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Ghorbani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Forouhi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Beheshti F, Hosseini M, Bakhtiari-Dovvombaygi H, Salmani H, Ahmadabady S, Marefati N, Baghcheghi Y. Rosiglitazone attenuates amyloid beta and glial fibrillary acidic protein in the hippocampus and neuroinflammation associated learning and memory impairments in rats. Behav Brain Res 2023; 452:114549. [PMID: 37343837 DOI: 10.1016/j.bbr.2023.114549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE The aim of the current study was to investigate the beneficial effects of rosiglitazone (Rosi) on amyloid beta(Aβ) and glial fibrillary acidic protein (GFAP) in the hippocampus and neuroinflammation-associated learning and memory impairments in rats. MATERIALS AND METHODS The rats were grouped and treated as follows: (1) Control in which saline and vehicle were administered instead of LPS and Rosi respectively. (2) Lipopolysaccharide (LPS) group in which LPS was dissolved in saline and injected (1 mg/kg) intraperitoneally. Vehicle was administered instead of Rosi in this group. (3-5) LPS+ Rosi 1, LPS+ Rosi 3, and LPS+ Rosi 5 groups in them 1, 3, or 5 mg/kg of Rosi respectively was administered 30 min before LPS. The treatments were done for two weeks. In the first week, Rosi or its vehicle was injected 30 min before LPS. In the second week, the treatments were the same as the first week and behavioral tests were also carried out in the second week. The hippocampal tissues were finally detached for biochemical assessment. RESULTS The results showed that Rosi reversed increased levels of Aβ, GFAP, interleukin (IL)- 6, tumor necrosis factor-α (TNF-α), nitric oxide (NO) metabolites, and malondialdehyde (MDA) due to LPS injection. Rosi also reversed attenuating effects of LPS on IL-10 and thiol concentration and activities of catalase (CAT) and superoxide dismutase (SOD). In the Morris water maze test, the LPS group had a longer latency to find the platform while spent a shorter time spent in the target quadrant in the probe trial than the control group. In the passive avoidance test, the animals of the LPS group had a shorter delay to enter the dark chamber than the animals of the control group. Treatment with Rosi reversed these parameters. CONCLUSION The findings showed Rosi attenuated Aβ, GFAP, and oxidative stress in the hippocampus and neuroinflammation-associated learning and memory impairments in rats.
Collapse
Affiliation(s)
- Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Bakhtiari-Dovvombaygi
- Nursing and Midwifery School, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Salmani
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran
| | - Somaieh Ahmadabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yousef Baghcheghi
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
8
|
Ullah R, Ali G, Baseer A, Irum Khan S, Akram M, Khan S, Ahmad N, Farooq U, Kanwal Nawaz N, Shaheen S, Kumari G, Ullah I. Tannic acid inhibits lipopolysaccharide-induced cognitive impairment in adult mice by targeting multiple pathological features. Int Immunopharmacol 2022; 110:108970. [DOI: 10.1016/j.intimp.2022.108970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
|
9
|
Effects of thymoquinone on scopolamine-induced spatial and echoic memory changes through regulation of lipid peroxidation and cholinergic impairment. Behav Brain Res 2022; 431:113972. [PMID: 35718231 DOI: 10.1016/j.bbr.2022.113972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Thymoquinone (TMQ), one of the main components active of Nigella sativa, shows very useful biomedical properties. Evidence suggests that cholinergic dysfunction and oxidative stress play role in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In the present study, we investigated the anti-amnestic effect of TMQ in scopolamine-induced animal model of AD. Wistar rats were randomly divided into four groups; Sham(SH), TMQ-treated(TMQ), scopolamine-treated(SCO) and scopolamine+TMQ-treated(SCO_TMQ) groups. TMQ (20 mg/kg) prepared in corn oil was administered intraperitoneally (i.p.) 1-h before experiments. Scopolamine (1 mg/kg) dissolved in 0.9% physiological saline was administered intraperitoneally (i.p.). We recorded mismatch negativity (MMN) response as an electrophysiological correlate of echoic memory. Object location memory (OLM) and Y-maze alternation tests were carried out to assess spatial memory. Then, the brain homogenates content of thiobarbituric-acid-reactive-substances (TBARS), 4-Hydroxy-2-nonenal (4-HNE) and acetylcholine (ACh)/acetylcholine (AChE) activity were biochemically determined. In the scopolamine-treated rats, TMQ was found to significantly improve the discrimination and spontaneous alteration levels in the OLM and Y-maze tests, respectively. Furthermore, TMQ significantly mitigated the scopolamine-induced attenuation of MMN and related theta responses. Moreover, scopolamine treatment increased TBARS/4-HNE level and decreased ACh level in the brain, and TMQ was able to significantly prevent these effects. AChE activity was increased in the SCO group; this effect was significantly attenuated by TMQ. TMQ diminished the lipid peroxidation and cholinergic dysfunction in the scopolamine-induced AD rat model which all reflected in improving the MMN/theta response and spatial memory. This may implement TMQ as an adjuvant therapeutic strategy in ameliorating AD.
Collapse
|
10
|
Dolatkhah N, Afshar AA, Sharifi S, Rahbar M, Toopchizadeh V, Hashemian M. The effects of topical and oral Nigella Sativa oil on clinical findings in knee osteoarthritis: A double-blind, randomized controlled trial. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Hosseini Z, Mansouritorghabeh F, Kakhki FSH, Hosseini M, Rakhshandeh H, Hosseini A, Hasanpour M, Iranshahi M, Rajabian A. Effect of Sanguisorba minor on scopolamine-induced memory loss in rat: involvement of oxidative stress and acetylcholinesterase. Metab Brain Dis 2022; 37:473-488. [PMID: 34982352 DOI: 10.1007/s11011-021-00898-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/26/2021] [Indexed: 01/07/2023]
Abstract
Sanguisorba minor (S. minor) has neuroprotective and antioxidant activities. However, its potential benefits in ameliorating learning and memory functions have been explored in no studies up to now. So, in the current study, rats were treated with S. minor hydro-ethanolic extract (50, 100, and 200 mg/kg, intraperitoneal (i.p.)) as well as rivastigmine (0.5 mg/kg, i.p.) for 21 consecutive days. Thereafter, their behavioral performance was assessed using Morris water maze (MWM) and passive avoidance (PA) tasks. Notably, 30 min before conducting the tasks, scopolamine was injected. Finally, the biochemical assessments were done using the brain tissue. The extract characterization was performed by liquid chromatography-mass spectrometry, which confirmed the presence of quercetin, myricetin, kaempferol, catechin, ellagic acid, and gallic acid derivatives. In the MWM test, the extract reduced both escape latency and the travelled distance, compared to the scopolamine group. Moreover, in the PA test, the latency to enter the dark chamber significantly increased by the extract, compared to the scopolamine group (p < 0.05-p < 0.001). Notably, the beneficial effects of S. minor on cognitive performance of the scopolamine-treated rats appeared to be similar or even better than rivastigmine in behavior performance. Similar to rivastigmine, it was observed that the extract attenuated both AChE activity and oxidative injury in the brain as evidenced by the increased antioxidant enzymes and total thiol content; however, it decreased malondialdehyde level (p < 0.05-p < 0.001). In conclusion, the results suggested the effectiveness of S. minor in preventing cognitive dysfunction induced by scopolamine. Accordingly, these protective effects might be produced by the regulation of cholinergic activity and oxidative stress. S. minor could be considered as a potential alternative therapy in cognition disorders.
Collapse
Affiliation(s)
- Zeinab Hosseini
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mahmoud Hosseini
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Anaeigoudari A. Antidepressant and anti-nociceptive effects of Nigella sativa and its main constituent, thymoquinone: A literature review. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.363875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
13
|
Anwar M, Azam F, Alenezi S, Mahmood D, Imam F, Alharbi K. Nigella sativa oil alleviates doxorubicin-induced cardiomyopathy and neurobehavioral changes in mice: In vivo and in-silico study. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Liu I, Varinthra P, Suresh P, Chokkalingam P, Ibiayo A. Anti-inflammatory and memory-enhancing properties of Chinese herbal extracts: The possible application in Alzheimer's disease. Tzu Chi Med J 2022. [DOI: 10.4103/tcmj.tcmj_139_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Gao Y, Qin H, Wu D, Liu C, Fang L, Wang J, Liu X, Min W. Walnut peptide WEKPPVSH in alleviating oxidative stress and inflammation in lipopolysaccharide-activated BV-2 microglia via the Nrf2/HO-1 and NF-κB/p38 MAPK pathways. J Biosci Bioeng 2021; 132:496-504. [PMID: 34509368 DOI: 10.1016/j.jbiosc.2021.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
The peptide WEKPPVSH from walnut protein hydrolyzate was used to evaluate the antioxidant and anti-inflammatory protective effect on lipopolysaccharide (LPS)-activated BV-2 microglia and its possible mechanism. The results indicated that WEKPPVSH significantly decreased nitric oxide (NO) and reactive oxygen species (ROS) generation in a dose-dependent manner, and significantly up-regulated superoxide dismutase and catalase activities (P < 0.01). Results of enzyme-linked immunosorbent assay (ELISA) showed that WEKPPVSH significantly mitigated the secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) (P < 0.01). Immunofluorescence analysis exhibited that WEKPPVSH down-regulated p65 translocation to the cell nucleus. Western blotting showed that WEKPPVSH up-regulated the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1), and down-regulated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), p-IκB/IκB, p-p65/p65 and p-p38/p38. In summary, WEKPPVSH might protect against oxidative stress and inflammation in LPS-stimulated BV-2 microglia by enhancing the Nrf2/HO-1 signaling pathway and blocking the nuclear factor-κB/p38 mitogen - activated protein kinase (NF-κB/p38 MAPK) signaling pathway. The results provided an experimental basis for the research and development of walnut peptide products.
Collapse
Affiliation(s)
- Yawen Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Hanxiong Qin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
16
|
Fadaei H, Mirhosseiniardakani S, Farajzadeh A, Aghayan SS, Jafarisani M, Garmabi B. Aqueous-alcoholic Ferulla extract reduces memory impairments in rats exposed to cadmium chloride. Brain Behav 2021; 11:e2285. [PMID: 34291606 PMCID: PMC8413748 DOI: 10.1002/brb3.2285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Cadmium (Cd) is the most dangerous heavy metal that is becoming more widespread in nature as a result of industrial activities. One of the toxic effects of Cd on the body is its neurological effect. The mechanism of these effects has been attributed to the induction of oxidative stress. Ferulla plant has antioxidant properties. In the present study, the aim was to reduce the toxic effects of Cd on memory impairment in rats by through the consumption of Ferulla extract. MATERIALS & METHOD Rats were randomly divided into five groups of six: (1) control group, (2) 300 μM cadmium exposure group, and three treatment groups with doses of (3) 100, (4) 300, and (5) 600 mg/kg.BW of F. Ferulla extract after Cd exposure. To induce neurotoxicity, Cd was daily injected peritoneally at a concentration of 300 μM in 1 ml of normal saline for a week. Next, for 3 weeks, the Cd group received 1 ml of normal peritoneal saline, and the treatment groups received F. Ferulla extract at concentrations of 100, 300, and 600 mg/kg.BW in 1 ml of normal saline daily for a week. At the end of the treatment period, a water maze was used to assess memory disorders. Malondialdehyde (MDA), glutathione concentration (GSH), and glutathione peroxidase (GPX) activity in nerve tissue were also measured. Morris water maze was also performed after intervention. RESULTS Cd-induced neurotoxicity was shown in Cd groups. MDA, GSH, and GPX have a significant difference in comparison between the Cd and 300, 600 treated groups. MDA has a significant increase (p < 0.05), and GSH and GPX have a significant decrease (p < 0.05). The results of the Morris water maze showed that the Cd group spent either 300 or 600 more distances and time to find a place to escape, which was significant (p < 0.05) CONCLUSION: Cd exposure can induce neurotoxicity and disrupt learning and memory. On the other hand, Ferulla extract can improve learning and memory in Cd-induced neurotoxicity model via induced antioxidant defense system.
Collapse
Affiliation(s)
- Homeyra Fadaei
- Department of Medical sciencesBabol BranchIslamic Azad UniversityBabolIran
| | | | - Asghar Farajzadeh
- Clinical BiochemistryIslamic Azad UniversityArdabil BranchArdabilIran
| | - Seyed Sharokh Aghayan
- Clinical Research Development Unit, Imam Hossein HospitalShahroud University of Medical SciencesShahroudIran
| | - Moslem Jafarisani
- Environmental and Occupational Health Research CenterShahroud University of Medical SciencesShahroudIran
| | - Behzad Garmabi
- NeuroscienceSchool of MedicineShahroud University of Medical SciencesShahroudIran
| |
Collapse
|