1
|
Chen W, Cao Z, Wang S. Edaravone mitigates calcium oxalate-induced renal tubular epithelial cell injury by inhibiting autophagy-mediated ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5569-5578. [PMID: 39576301 DOI: 10.1007/s00210-024-03630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 04/11/2025]
Abstract
Edaravone (EDA) has been found to exert protective effects on kidney injury. Nevertheless, the functions of EDA in kidney stones as well as the potential mechanism are vague. Calcium oxalate (CaOx) was used to induce kidney stones cell model with human renal tubular epithelial cell line HK-2. CCK-8 assay was employed to detect cell viability injury. Oxidative stress was measured by DCFH-DA staining and detection of MDA, SOD, and GSH. Staining of FerroOrange and western blot were applied for ferroptosis. In addition, autophagy was elucidated by western blot and immunofluorescence staining. The data showed that CaOx treatment aggravated HK-2 cell viability injury, increased the levels of ROS, MDA, and Fe2+ in HK-2 cells, and reduced the contents of SOD and GSH. Additionally, CaOx enhanced the expression of KIM1, TFR1, LC3II/LC31, and BECLIN1 in HK-2 cells, while resulting in a decrease in the expression of GPX4, SLC7A11, and P62. Pretreatment of EDA mitigated CaOx-induced oxidative stress and ferroptosis, as well as autophagy in renal tubular epithelial cells. However, autophagy inducer rapamycin (Rap) reversed the protective role of EDA on renal tubular epithelial cell injury, oxidative stress, and ferroptosis. In conclusion, EDA contributes to suppressing oxidative stress and ferroptosis in CaOx-induced HT22 cells by restraining autophagy, which may be a potential candidate for the treatment of kidney stones caused by renal tubular epithelial cell damage.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology, Ningbo Urology and Nephrology Hospital, No.998 Qianhe North Road, Ningbo, 315100, Zhejiang, China
| | - Zipei Cao
- Department of Urology, Ningbo Urology and Nephrology Hospital, No.998 Qianhe North Road, Ningbo, 315100, Zhejiang, China
| | - Shunping Wang
- Department of Urology, Ningbo Urology and Nephrology Hospital, No.998 Qianhe North Road, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
2
|
Alquraan LT, Alzoubi KH, Jaber S, Khabour OF, Al-Trad B, Al-Shwaheen A, Alomari G, Rababa'h SY, Masadeh MM. Edaravone's reno-protective effects against chronic heat-stress exposure. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6021-6029. [PMID: 39625491 DOI: 10.1007/s00210-024-03685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/26/2024] [Indexed: 04/11/2025]
Abstract
Edaravone (EDV) is a potent antioxidant with anti-inflammatory properties. It is used to treat various diseases, especially neurodegenerative diseases. This study aims to examine EDV's potential renal protective effects on kidney injury induced by heat stress in rats. Male Wistar rats were segregated into four distinct groups (n = 16/group): control (Ctr), heat stress (HS), edaravone (EDV), and HS+EDV groups. Heat stress was applied 6 days a week for 30 min for 8 weeks, and EDV treatment (6 mg/kg. IP) was administered simultaneously in the HS+EDV group. After the experiment, blood and kidney tissue samples were gathered for subsequent analysis. Compared to the control group, the HS group exhibited a significant increase in serum creatinine and urea levels (P < 0.05). Additionally, malondialdehyde level and catalase activity, tumor necrosis factor-α (TNF-α), and interleukin-1 beta (IL-1β) mRNA expression were increased in the kidney tissue during HS. The renal tissues of the heat-stressed animal showed noticeable histological alterations compared to the control group. However, in the HS+EDV and EDV groups, the creatinine and urea concentrations in the blood were markedly reduced compared to the HS group (P < 0.05). In addition, renal oxidative stress biomarkers were normalized (malondialdehyde levels and catalase activity; P < 0.05). The histopathological alterations in the renal tissues of the groups treated with EDV were markedly diminished. In addition, the renal mRNA expression levels of IL-1β and TNF-α were markedly reduced in the HS+EDV group compared to the HS group (P < 0.05). EDV treatment in a heat-stress rat model demonstrated a protective effect on renal tissue, most likely due to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Laiali T Alquraan
- Department of Biological Sciences, The Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, UAE.
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Sanaa Jaber
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Bahaa Al-Trad
- Department of Biological Sciences, The Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Aseel Al-Shwaheen
- Department of Biological Sciences, The Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Ghada Alomari
- Department of Biological Sciences, The Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Suzie Y Rababa'h
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
3
|
Tekes E, Ickin Gulen M, Silan C, Guven Bagla A. Humic acid attenuates cisplatin-induced nephrotoxicity in rats. Drug Chem Toxicol 2025:1-9. [PMID: 39871462 DOI: 10.1080/01480545.2025.2453590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/24/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025]
Abstract
Cisplatin-induced nephrotoxicity, a major limitation of this chemotherapeutic agent, involves oxidative stress, inflammation, and apoptosis. This study investigated the potential renoprotective effects of humic acid in a rat model of cisplatin-induced nephrotoxicity. Forty-two male Wistar rats were assigned to six groups: control, humic acid, cisplatin, cisplatin + humic acid 10 mg/kg, cisplatin + humic acid 20 mg/kg, and cisplatin + humic acid 40 mg/kg. On day 7, the rats were sacrificed, and cardiac blood and kidneys were collected for biochemical and histopathological examinations. Humic acid administration significantly attenuated the cisplatin-induced increases in renal TNF-α and NF-κB levels, indicating a reduction in inflammation. Humic acid also ameliorated histopathological damage, including Bowman's capsule dilatation, tubular cell degeneration, and hemorrhage. However, humic acid did not significantly alter oxidative stress parameters or caspase-3 levels. Humic acid demonstrates a protective effect against cisplatin-induced nephrotoxicity in rats, primarily by mitigating the inflammatory response. While HA's beneficial effects on oxidative stress and apoptosis were limited in this study, its ability to reduce inflammation highlights its potential as a therapeutic strategy to mitigate cisplatin-induced kidney injury.
Collapse
Affiliation(s)
- Ender Tekes
- Department of Pharmacology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Meltem Ickin Gulen
- Department of Histology & Embryology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Coskun Silan
- Department of Pharmacology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Aysel Guven Bagla
- Department of Histology & Embryology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
4
|
Bayrak BB, Sancar S, Cakmak NH, Bolkent S, Yanardag R. Ameliorative effects of Edaravone against Valproic Acid-Induced kidney damage. J Mol Histol 2024; 56:4. [PMID: 39601910 DOI: 10.1007/s10735-024-10291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Valproic acid (VPA) is a well-known and increasingly documented antiepileptic drug that has been widely used in the treatment of epilepsy and/or epilepsy-related disorders. Prolonged clinical use of VPA has been reported to cause side effects such as nephrotoxicity. Edaravone (EDA) is a powerful free radical scavenger. The aim of the study was to investigate the protective effects of EDA against VPA-induced oxidative renal injury. Four experimental groups were formed by randomly assigning thirty-eight male Sprague Dawley rats. The first group, (Control Group, n = 8), consisted of healthy rats. The second group, (Group II, n = 10), comprised control rats given intraperitoneally EDA (30 mg/kg/day) for seven days. The third group (Group III, n = 10) was administered intraperitoneally only VPA (500 mg/kg/day) for seven days. The last group (Group IV, n = 10) was treated with VPA + EDA for seven days. On the 8th day, kidney tissues were immediately removed from rats. In kidney homogenates, reduced glutathione levels and Na/K+-ATPase, paraoxonase1 and prolidase activities were remarkably decreased while catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, myeloperoxidase, and xanthine oxidase activities and lipid peroxidation, protein carbonyl, advanced oxidized protein products, and hydroxyproline contents were notably elevated in VPA given group. Consistently, administration of EDA decreased renal degenerative changes seen in the kidney tissue of VPA given rats. Treatment with EDA in the VPA group significantly resulted in the recovery of both biochemical and histopathological alterations. As a result, EDA is potentially beneficial to revert oxidative renal damage induced by VPA.
Collapse
Affiliation(s)
- Bertan Boran Bayrak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar-Istanbul, Türkiye.
| | - Serap Sancar
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler- Istanbul, Türkiye
| | | | - Sehnaz Bolkent
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler- Istanbul, Türkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar-Istanbul, Türkiye
| |
Collapse
|
5
|
Abou Taha MA, Ali FEM, Saleh IG, Akool ES. Sorafenib and edaravone protect against renal fibrosis induced by unilateral ureteral obstruction via inhibition of oxidative stress, inflammation, and RIPK-3/MLKL pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8961-8977. [PMID: 38874805 PMCID: PMC11522075 DOI: 10.1007/s00210-024-03146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/05/2024] [Indexed: 06/15/2024]
Abstract
Renal fibrosis is the common endpoint of nearly all chronic and progressive nephropathies. Cell death and sterile inflammation are the main characteristics of renal fibrosis, which can lead to end-stage renal failure. The inflammatory reaction triggered by tissue damage is strongly related to necroptosis, a type of caspase-independent, regulated cell death. Using an animal model of unilateral ureteral obstruction (UUO), the anti-fibrotic effects of sorafenib (SOF), a multi-kinase inhibitor, and edaravone (EDV), a potent antioxidant and free radical scavenger, were examined in rats with obstructive nephropathy. Experimentally, animals were divided randomly into five groups: sham; UUO; UUO + SOF (5 mg/kg/day, P.O.); UUO + EDV (20 mg/kg/day, P.O.); and UUO + SOF + EDV groups. The kidney function biomarkers, oxidant/antioxidant status, renal mRNA expressions of TNF-α, collagen-1α, protein expressions of RIPK-1, RIPK-3, MLKL, caspase-8, HYP, MPO, and TNF-α were all significantly modulated by UUO. Administration of either SOF or EDV significantly attenuated cellular and molecular changes induced by UUO. Also, histopathological changes were improved. Moreover, SOF in combination with EDV, significantly improved UUO-induced renal fibrosis compared with each drug alone. Collectively, administration of either SOF or EDV or both of them significantly attenuated the rats with obstructive nephropathy, possibly by blocking the RIPK-3/MLKL necroptotic pathway and suppressing renal oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mohamed A Abou Taha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University Assiut Branch, Assiut, 71524, Egypt.
| | - Ibrahim G Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Sinai University, Kantara, Ismailia, Egypt
| | - El-Sayed Akool
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
7
|
Duranti E, Cordani N, Villa C. Edaravone: A Novel Possible Drug for Cancer Treatment? Int J Mol Sci 2024; 25:1633. [PMID: 38338912 PMCID: PMC10855093 DOI: 10.3390/ijms25031633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Despite significant advancements in understanding the causes and progression of tumors, cancer remains one of the leading causes of death worldwide. In light of advances in cancer therapy, there has been a growing interest in drug repurposing, which involves exploring new uses for medications that are already approved for clinical use. One such medication is edaravone, which is currently used to manage patients with cerebral infarction and amyotrophic lateral sclerosis. Due to its antioxidant and anti-inflammatory properties, edaravone has also been investigated for its potential activities in treating cancer, notably as an anti-proliferative and cytoprotective drug against side effects induced by traditional cancer therapies. This comprehensive review aims to provide updates on the various applications of edaravone in cancer therapy. It explores its potential as a standalone antitumor drug, either used alone or in combination with other medications, as well as its role as an adjuvant to mitigate the side effects of conventional anticancer treatments.
Collapse
Affiliation(s)
| | | | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.D.); (N.C.)
| |
Collapse
|
8
|
Yang L, Xu X, Wang L, Zeng KB, Wang XF. Edaravone administration and its potential association with a new clinical syndrome in cerebral infarction patients: Three case reports. World J Clin Cases 2023; 11:4648-4654. [PMID: 37469729 PMCID: PMC10353518 DOI: 10.12998/wjcc.v11.i19.4648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/24/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Edaravone is a widely used treatment for patients with cerebral infarction and, in most cases, edaravone-induced side effects are mild. However, edaravone-related adverse reactions have been receiving increasing attention.
CASE SUMMARY We treated three patients with acute cerebral infarction who died following treatment with edaravone. Edaravone is a widely used treatment for patients with cerebral infarction and, in most cases, edaravone-induced side effects are mild. However, edaravone-related adverse reactions have been receiving increasing attention.
CONCLUSION Our cases highlight the importance of educating clinicians regarding the new edaravone-induced clinical syndromes of cerebral infarction as potentially fatal adverse drug reactions. Considering that no laboratory or confirmatory test exists to diagnose edaravone-induced death from cerebral infarction, clinicians’ knowledge is the key element in recognizing this phenomenon.
Collapse
Affiliation(s)
- Liu Yang
- Department of Neurology, Central Hospital Affiliated to Chongqing University, Chongqing 400010, China
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Liang Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ke-Bin Zeng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xue-Feng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
9
|
Kawamoto T, Sasai K. Edaravone Exerts Protective Effects on Mice Intestinal Injury without Interfering with the Anti-Tumor Effects of Radiation. Curr Issues Mol Biol 2023; 45:5362-5372. [PMID: 37504256 PMCID: PMC10378466 DOI: 10.3390/cimb45070340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
The appropriate dosage of edaravone-a radioprotective agent-and its effect on tumors are unknown. This study evaluated the effects of edaravone on intestinal injuries and tumors in mice induced by whole body X-ray irradiation. Small intestinal mucositis was induced in C3H/HeNSlc mice using a single X-ray dose (15 Gy). Edaravone (15, 30, and 100 mg/kg) was administered 30 min before irradiation to evaluate its protective effect. After 3.5 days, the jejunum was removed and the histological changes were evaluated. Next, C3H/HeNSlc mice with squamous cell carcinoma VII tumors were provided the same single X-ray dose and 100 mg/kg edaravone; further, the tumors were immediately induced after irradiation. The tumor cell viability was detected using an in vivo-in vitro colony formation assay. We found that the intestinal colony-forming ability after irradiation was significantly higher in the 100 mg/kg edaravone group than that in the control group. Moreover, the apoptotic cells in the villi immunohistochemically stained with cleaved caspase-3 were significantly lower in the 100 mg/kg edaravone group than in the control group. We found no radioprotective effects of intraperitoneally inoculated edaravone in both hind legs on squamous cell carcinoma VII tumors. These findings suggest that 100 mg/kg edaravone exerts protective effects on small intestinal injuries without interfering with the antitumor effects of radiation.
Collapse
Affiliation(s)
- Terufumi Kawamoto
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Keisuke Sasai
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
10
|
Al Aameri RFH, Alanisi EMA, Oluwatosin A, Al Sallami D, Sheth S, Alberts I, Patel S, Rybak LP, Ramkumar V. Targeting CXCL1 chemokine signaling for treating cisplatin ototoxicity. Front Immunol 2023; 14:1125948. [PMID: 37063917 PMCID: PMC10102581 DOI: 10.3389/fimmu.2023.1125948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Cisplatin is chemotherapy used for solid tumor treatment like lung, bladder, head and neck, ovarian and testicular cancers. However, cisplatin-induced ototoxicity limits the utility of this agent in cancer patients, especially when dose escalations are needed. Ototoxicity is associated with cochlear cell death through DNA damage, the generation of reactive oxygen species (ROS) and the consequent activation of caspase, glutamate excitotoxicity, inflammation, apoptosis and/or necrosis. Previous studies have demonstrated a role of CXC chemokines in cisplatin ototoxicity. In this study, we investigated the role of CXCL1, a cytokine which increased in the serum and cochlea by 24 h following cisplatin administration. Adult male Wistar rats treated with cisplatin demonstrated significant hearing loss, assessed by auditory brainstem responses (ABRs), hair cell loss and loss of ribbon synapse. Immunohistochemical studies evaluated the levels of CXCL1 along with increased presence of CD68 and CD45-positive immune cells in cochlea. Increases in CXCL1 was time-dependent in the spiral ganglion neurons and organ of Corti and was associated with progressive increases in CD45, CD68 and IBA1-positive immune cells. Trans-tympanic administration of SB225002, a chemical inhibitor of CXCR2 (receptor target for CXCL1) reduced immune cell migration, protected against cisplatin-induced hearing loss and preserved hair cell integrity. We show that SB225002 reduced the expression of CXCL1, NOX3, iNOS, TNF-α, IL-6 and COX-2. Similarly, knockdown of CXCR2 by trans-tympanic administration of CXCR2 siRNA protected against hearing loss and loss of outer hair cells and reduced ribbon synapses. In addition, SB225002 reduced the expression of inflammatory mediators induced by cisplatin. These results implicate the CXCL1 chemokine as an early player in cisplatin ototoxicity, possibly by initiating the immune cascade, and indicate that CXCR2 is a relevant target for treating cisplatin ototoxicity.
Collapse
Affiliation(s)
- Raheem F. H. Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Entkhab M. A. Alanisi
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, United States
| | - Adu Oluwatosin
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Dheyaa Al Sallami
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, United States
| | - Ian Alberts
- Medical Microbiology, Immunology and Cell Biology (MMICB), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Shree Patel
- Medical Microbiology, Immunology and Cell Biology (MMICB), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Leonard P. Rybak
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Vickram Ramkumar,
| |
Collapse
|
11
|
Exploring the effects of edaravone in rats with contrast-induced acute kidney injury. Life Sci 2022; 309:121006. [PMID: 36174711 DOI: 10.1016/j.lfs.2022.121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
Abstract
AIMS Oxidative stress and inflammatory response play a vital role in the pathogenesis of contrast-induced acute kidney injury (CI-AKI). This study investigated the effects of edaravone in rats with CI-AKI. MAIN METHODS Male Sprague Dawley rats were randomly assigned into four groups (n = 11-14/group): control, edaravone (30 mg/kg/day intraperitoneally (IP)), CI-AKI, and edaravone with CI-AKI. The induction of CI-AKI was performed by dehydration and the administration of contrast media (iohexol) and inhibitors of prostaglandin (indomethacin) and nitric oxide synthesis (L-NAME: N-nitro L-arginine methyl ester). Edaravone was administered for two weeks before the induction of CI-AKI. Serum creatinine and urea, renal oxidative stress and inflammatory biomarkers, and histopathological alterations were evaluated after 48 h of contrast exposure. KEY FINDINGS Rats with CI-AKI showed a significant increase in serum creatinine and urea. The levels of antioxidant biomarkers including glutathione peroxidase, superoxide dismutase and reduced glutathione were significantly decreased in CI-AKI group versus control. Pre-treatment of rats with edaravone normalized kidney function and protected the kidney from oxidative damage as demonstrated by normalization of previous biomarkers. Furthermore, edaravone partially ameliorated renal histopathological alterations relative to the CI-AKI group, notably in the nephrons. No changes were observed in inflammatory biomarkers including tumour necrosis factor-alpha and interleukin-6 among all groups. SIGNIFICANCE The current findings suggest that edaravone could be a potential strategy to ameliorate developing CI-AKI possibly by improving renal antioxidant capacity. Further studies are warranted to expand the current understanding of the use of edaravone in the various models of AKI.
Collapse
|