1
|
Zhang Z, Huang G, Zhang P, Shen J, Wang S, Li Y. Development of iron-based biochar for enhancing nitrate adsorption: Effects of specific surface area, electrostatic force, and functional groups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159037. [PMID: 36179839 DOI: 10.1016/j.scitotenv.2022.159037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The problem of nitrate contamination in water has attracted widespread attention. Original biochar has a poor adsorption capacity for nitrate adsorption. Iron impregnation and acid protonation (base deprotonation) are common modification methods for biochar. In order to develop iron-mediated biochar containing multi-functional groups for enhancing nitrate adsorption, Fe-BC@H and Fe-BC@OH were prepared using a two-stage development process, including an iron-based carbon pyrolysis followed by acid protonation (or base deprotonation). The pseudo-second-order kinetic and Langmuir models can well describe the adsorption process which is a physicochemical complex monolayer adsorption. The data proved that Fe-BC@H (9.35 mg/g NO3--N) had a stronger adsorption capacity than Fe-BC@OH (2.95 mg/g NO3--N). Surface morphologies, functional groups, and mineral compositions of Fe-BC@H and Fe-BC@OH were analyzed through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Characterization results showed that acid protonation can further improve the specific surface area (SSA), pore volume, and Zeta potential of Fe-based biochar, providing more adsorption sites for nitrate and enhancing the electrostatic force between nitrate and biochar. However, these effects were suppressed through base deprotonation. In addition, acid protonation can significantly increase the type and number of functional groups of biochar to enhance the chemisorption of nitrate. Such results suggested that the acid protonation can further improve the adsorption capacity of Fe-based biochar for nitrate, while base deprotonation had an inhibitory effect on that of Fe-based biochar. Overall, this study reveals that specific surface area, electrostatic force, and functional groups are crucial effects of the nitrate adsorption on acid/base modified biochar.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Guohe Huang
- China-Canada Center of Energy, Environment and Sustainability Research, UR-SDU, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Peng Zhang
- Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jian Shen
- Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yongping Li
- China-Canada Center of Energy, Environment and Sustainability Research, UR-SDU, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
2
|
Sato N, Amano Y, Machida M. Adsorption characteristics of nitrate ion by sodium carbonate activated PAN-based activated carbon fiber. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AbstractIn this study, polyacrylonitrile (PAN)-based carbon fiber with high nitrogen content was activated at 800 °C with sodium carbonate and heat-treated at 950 °C to prepare activated carbon fiber (ACF), and the results of nitrate ion adsorption on the prepared ACF are presented. CHN elemental analysis, XPS measurement, and Boehm titration were used to determine the nitrogen content and surface functional groups of ACF. It is discussed that the total amount of nitrogen decreases, whereas quaternary nitrogen (N-Q) increases upon heat treatment. The decrease in adsorption capacity of the prepared activated carbon under different storage conditions is shown. It is observed that the adsorption capacity of nitrate ion at equilibrium pH (pHe) 5 is halved after 5 weeks, and the decrease in adsorption capacity at pHe 3 is suppressed. The adsorption isotherms of the prepared ACF are shown using the Langmuir equation. The effect of pH on the adsorption capacity of the prepared ACF is compared with that of ACF before heat treatment and zinc chloride-activated powdered activated carbon. The adsorption capacity of ACF without heat treatment at 950 °C decreases as the pHe of the solution increases, and the pH of the nitrate solution including ACF after heat treatment is stable at pHe 4–5.
Collapse
|
3
|
Patel N, Srivastav AL, Patel A, Singh A, Singh SK, Chaudhary VK, Singh PK, Bhunia B. Nitrate contamination in water resources, human health risks and its remediation through adsorption: a focused review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69137-69152. [PMID: 35947260 DOI: 10.1007/s11356-022-22377-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The level of nitrate in water has been increasing considerably all around the world due to vast application of inorganic nitrogen fertiliser and animal manure. Because of nitrate's high solubility in water, human beings are getting exposed to it mainly through various routes including water, food etc. Various regulations have been set for nitrate (45-50 mgNO3-/L) in drinking water to protect health of the infants from the methemoglobinemia, birth defects, thyroid disease, risk of specific cancers, i.e. colorectal, breast and bladder cancer caused due to nitrate poisoning. Different methods like ion exchange, adsorption, biological denitrification etc. have the ability to eliminate the nitrate from the aqueous medium. However, adsorption process got preference over the other approaches because of its simple design and satisfactory results especially with surface modified adsorbents or with mineral-based adsorbents. Different types of adsorbents have been used for this purpose; however, adsorbents derived from the biomass wastes have great adsorption capacities for nitrate such as tea waste-based adsorbents (136.43 mg/g), carbon nanotube (142.86 mg/g), chitosan beads (104 mg/g) and cetyltrimethylammonium bromide modified rice husk (278 mg/g). Therefore, a thorough literature survey has been carried out to formulate this review paper to understand various sources of nitrate pollution, route of exposure to the human beings, ill effects along with discussing the key developments as well as the new advancements reported in procuring low-cost efficient adsorbents for water purification.
Collapse
Affiliation(s)
- Naveen Patel
- Department of Civil Engineering, IET, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
- Department of Environmental Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Akansha Patel
- Department of Environmental Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Anurag Singh
- Department of Mechanical Engineering, IET, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Shailendra Kumar Singh
- Department of Applied Sciences, IET, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Vinod Kumar Chaudhary
- Department of Environmental Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Prabhat Kumar Singh
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Biswanath Bhunia
- Department of Biotechnology, National Institute of Technology, Agartala, Tripura, India
| |
Collapse
|
4
|
Mashhadimoslem H, Safarzadeh Khosrowshahi M, Jafari M, Ghaemi A, Maleki A. Adsorption Equilibrium, Thermodynamic, and Kinetic Study of O 2/N 2/CO 2 on Functionalized Granular Activated Carbon. ACS OMEGA 2022; 7:18409-18426. [PMID: 35694455 PMCID: PMC9178727 DOI: 10.1021/acsomega.2c00673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/14/2022] [Indexed: 06/08/2023]
Abstract
A volumetric system was used to assess carbon-based adsorbents for evaluation of the gas separation, equilibrium, and kinetics of oxygen (O2), nitrogen (N2), and carbon dioxide (CO2) adsorption on granular activated carbon (GAC) and functionalized GAC at 298, 308, and 318 K under pressures up to 10 bar. The effects of ZnCl2, pH, arrangement of the pores, and heat-treatment temperature on the adsorptive capabilities of O2, N2, and CO2 were evaluated. High-performance O2 adsorption resulted with a fine sample (GAC-10-500) generated with a 0.1 wt % loading of ZnCl2. The optimal sample structure and morphology were characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, and powder X-ray diffraction. On the basis of the adsorption-desorption results, the fine GAC provides a surface area of 719 m2/g. Moreover, it possessed an average pore diameter of 1.69 nm and a micropore volume of 0.27 m3/g. At 298 K, the adsorption capacity of the GAC-10-500 adsorbent improved by 19.75% for O2 but was not significantly increased for N2 and CO2. Isotherm and kinetic adsorption models were applied to select the model best matching the studied O2, N2, and CO2 gas uptake on GAC-10-500 adsorbent. At 298 K and 10 bar, the sip isotherm model with the highest potential adsorption difference sequence and gas adsorption difference compared with pure GAC adsorbent as O2 > N2 > CO2 follows well for GAC-10-500. Eventually, the optimal sample is more effective for O2 adsorption than other gases.
Collapse
Affiliation(s)
- Hossein Mashhadimoslem
- School
of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| | - Mobin Safarzadeh Khosrowshahi
- Nanotechnology
Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| | - Mohammad Jafari
- School
of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| | - Ahad Ghaemi
- School
of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| | - Ali Maleki
- Catalysts
and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
5
|
Shen Y, Chen N, Feng Z, Feng C, Deng Y. Treatment of nitrate containing wastewater by adsorption process using polypyrrole-modified plastic-carbon: Characteristic and mechanism. CHEMOSPHERE 2022; 297:134107. [PMID: 35271890 DOI: 10.1016/j.chemosphere.2022.134107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Polypyrrole-modified plastic-carbon (PET-PPy) composite was prepared by using high porosity plastic-carbon materials and a special doping mechanism of polypyrrole to remove nitrate from water to achieve waste recycling. As a result, PET-PPy-500 showed remarkable nitrate adsorption in both acidic and alkaline wastewater. The pseudo-second-order kinetic and Langmuir isotherm models were fit for the nitrate adsorption by PET-PPy-500, and the maximum adsorption capacity predicted by the Langmuir model was 10.04 mg NO3-N/g (45.18 mg NO3-/g) at 30 °C. The ion exchange and electrostatic attraction were the main mechanisms of removing NO3- by PET-PPy-500, which was demonstrated by the interface characterization and theoretical calculation. The doped ions (Cl-) and/or other anions produced by charge transfer interaction were the main exchange ions in the process of NO3- adsorption. The main binding sites in the electrostatic adsorption process were nitrogen-containing functional groups, which can be confirmed by the results of XPS and density functional theory (DFT). Furthermore, DFT results also showed that the adsorption of nitrate by PET-PPy was a spontaneous exothermic process, and the adsorption energy at the nitrogen site was the lowest. The findings of this study provide a feasible strategy for the advanced treatment of nitrate containing wastewater.
Collapse
Affiliation(s)
- Yuanyuan Shen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Zhengyuan Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yang Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
6
|
Rahdar S, Pal K, Mohammadi L, Rahdar A, Goharniya Y, Samani S, Kyzas GZ. Response surface methodology for the removal of nitrate ions by adsorption onto copper oxide nanoparticles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Meng X, Yao L, Jiang W, Jiang X, Liu C, Yang L. In Situ Growth Synthesis of the CNTs@AC Hybrid Material for Efficient Nitrate-Nitrogen Adsorption. ACS OMEGA 2021; 6:1612-1622. [PMID: 33490821 PMCID: PMC7818592 DOI: 10.1021/acsomega.0c05566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Nitrate-nitrogen (NO3-N) is a common pollutant in aquatic environments and causes many environmental issues and health problems. This study successfully applied the activated AC@CNT composite synthesized by CNTs in-situ growth and post-treated by myristyltrimethylammonium bromide (MTAB) for NO3-N adsorption from wastewater. The results show that the highest NO3-N adsorption capacity of AC@CNTs-M was 14.59 mg·g-1. The in-situ growth of CNTs gave a higher specific surface area and more mesoporous volume, while MTAB uniformly occupied part of the pore structure after the modification process. The AC@CNTs-M had more surface functional groups of hydroxyl and carboxyl, which are favorable for the adsorption of NO3-N. The NO3-N adsorption on AC@CNTs-M was best defined by the pseudo-second-order model, and the isothermal analysis shows that NO3-N adsorption is a multiple process with a maximum adsorption capacity of 27.07 mg·g-1. All the results demonstrate the great potential of AC@CNTs-M for NO3-N adsorption from water, especially in acidic wastewater.
Collapse
Affiliation(s)
- Xiaomi Meng
- College
of Architecture and Environment, Sichuan
University, Chengdu 610065, P. R. China
| | - Lu Yao
- College
of Architecture and Environment, Sichuan
University, Chengdu 610065, P. R. China
- National
Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, P. R. China
| | - Wenju Jiang
- College
of Architecture and Environment, Sichuan
University, Chengdu 610065, P. R. China
- National
Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, P. R. China
| | - Xia Jiang
- College
of Architecture and Environment, Sichuan
University, Chengdu 610065, P. R. China
- National
Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, P. R. China
| | - Chengjun Liu
- College
of Architecture and Environment, Sichuan
University, Chengdu 610065, P. R. China
| | - Lin Yang
- College
of Architecture and Environment, Sichuan
University, Chengdu 610065, P. R. China
- National
Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, P. R. China
- National
Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
8
|
Xia F, Yang H, Li L, Ren Y, Shi D, Chai H, Ai H, He Q, Gu L. Enhanced nitrate adsorption by using cetyltrimethylammonium chloride pre-loaded activated carbon. ENVIRONMENTAL TECHNOLOGY 2020; 41:3562-3572. [PMID: 31050606 DOI: 10.1080/09593330.2019.1615133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
This paper used cetyltrimethylammonium chloride (CTAC) pre-loaded activated carbon (AC) to research nitrate adsorption. Effects of various parameters such as AC types, AC dosage as well as initial pH were studied. The results indicated that the ACs modified by CTAC can get higher nitrate removal. Even pH is neutral and basic, an accepted removal about 2.5 mg/g can be observed. The more CTAC pre-loaded on the AC surface, the higher nitrate adsorption capacity can be obtained. pH is regarded as a key factor affecting interactions between adsorbent and adsorbate, and the results confirmed that the nitrate adsorption on modified AC decreases gradually with the growth of initial pH. Besides, the acidic pH condition is much favoured for adsorption while the results gained a nitrate adsorption about 4.28 mg/g at pH = 3 condition. Sorption mechanism of nitrate on CTAC modified AC was investigated through two kinetic modellings including pseudo-second-order and Weber and Morris intra-particle diffusion model. The results imply that the generalized kinetic models tally well with experimental data. Additionally, interference of co-existing anions is examined, and the results showed that higher co-anions concentration would bring a heavier depression of the nitrate uptake due to its competing for adsorption sites.
Collapse
Affiliation(s)
- Fan Xia
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China
| | - Haifeng Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China
| | - Li Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China
| | - Yang Ren
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China
| | - Hainan Ai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
9
|
Fotsing PN, Woumfo ED, Mezghich S, Mignot M, Mofaddel N, Le Derf F, Vieillard J. Surface modification of biomaterials based on cocoa shell with improved nitrate and Cr(vi) removal. RSC Adv 2020; 10:20009-20019. [PMID: 35520429 PMCID: PMC9054216 DOI: 10.1039/d0ra03027a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
The present work addresses the development of simple, low-cost and eco-friendly cocoa-shell-based materials for efficient removal of heavy metal hexavalent chromium (Cr(vi)), and toxic nitrate (NO3 -) from aqueous solution. A conventional treatment process was used to purify cocoa shell (CS) into an adsorbent, followed by chemical grafting of dendrimers to promote its surface properties for nitrate and Cr(vi) removal. The morphology, surface charge, structure and stability of the new adsorbent were investigated by scanning electron microscopy, Fourier transform infrared and UV-visible spectroscopies, zeta potential, X-ray photoelectron spectrometry, and differential scanning calorimetry. The successful chemical grafting of the dendrimer (polyethyleneimine, PEI) onto purified CS was confirmed. CS-T-PEI-P proved to be a very efficient candidate for the removal of nitrate and chromium(vi). Removal of the two pollutants at different initial concentrations and pH values was studied and discussed. Sorption of chromium and nitrate was found to obey 2nd-order kinetics and a Freundlich-type isotherm, affording an uptake adsorption of 16.92 mg g-1 for NO3 - and 24.78 mg g-1 for Cr(vi). These results open promising prospects for its potential applications as a low cost catalyst in wastewater treatment.
Collapse
Affiliation(s)
- P Nkuigue Fotsing
- Laboratory of Applied Inorganic Chemistry, Faculty of Sciences, University of Yaoundé I P.O. Box 812 Yaoundé Cameroon
| | - E Djoufac Woumfo
- Laboratory of Applied Inorganic Chemistry, Faculty of Sciences, University of Yaoundé I P.O. Box 812 Yaoundé Cameroon
| | - S Mezghich
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014) 55, rue Saint Germain, 27000 Evreux France
| | - M Mignot
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014) 55, rue Saint Germain, 27000 Evreux France
| | - N Mofaddel
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014) 55, rue Saint Germain, 27000 Evreux France
| | - F Le Derf
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014) 55, rue Saint Germain, 27000 Evreux France
| | - J Vieillard
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014) 55, rue Saint Germain, 27000 Evreux France
| |
Collapse
|
10
|
Zhu D, Zuo J, Jiang Y, Zhang J, Zhang J, Wei C. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136102. [PMID: 31863988 DOI: 10.1016/j.scitotenv.2019.136102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Coal gasification fine slag (CGFS) was produced in the coal gasification process which was classified as an industrial solid waste. It was featured with naturally formed amorphous structures and an abundance of silicon, carbon and metal oxides. In this study, on the basis of the composition and structure characteristics of CGFS, a simple hydrochloric acid (HCl) leaching technology was applied to in situ prepare carbon-silica mesoporous composites (CSMCs) from CGFS by fully considering the value of the residual carbon. Special focus was put on the novel mechanism of pore formation in amorphous silica glass microspheres (SGM) during acid leaching. Experimental evidences showed that the metal oxides were uniformly distributed in SGM thus the dissolution of the metal oxides were starting from the surface of SGM, then gradually extending to the interior, and finally leading to form "tree branch" mesoporous channels. In addition, a response surface method was used to predict the optimal reaction conditions and the optimal sample (named as CGFS-O) was successfully prepared. CGFS-O possessed a prominent specific surface area (SSA) (337.51 m2/g) as well as an excellent pore volume (0.341 cm3/g). CGFS-O also exhibited a desirable capacity for NO3- removing and the adsorption process was studied detailed by changing different adsorption conditions. Adsorption results proved that CSMCs have the potential to purify wastewater in an economically and environmentally way. Therefore, combined with a proof-of-concept adsorption performance experiment, our study has not only provided a cost-effective strategy to industrially prepare CSMCs, reutilizing CGFS in an environmentally friendly way, but also contributed to the future applications of CSMCs with valuable insights into the pore formation mechanism in SGM during acid leaching process.
Collapse
Affiliation(s)
- Dandan Zhu
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Jing Zuo
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Yinshan Jiang
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Jinyi Zhang
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Jiupeng Zhang
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Cundi Wei
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China.
| |
Collapse
|
11
|
Wang Z, Liu H, Fang Z, Zhou X, Long X. Production of isophthalic acid from M‐Xylene catalyzed by Co(II) and HPW@C modified with ZnCl 2solution. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhi‐hao Wang
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Hua‐jie Liu
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Zhou‐wen Fang
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Xin‐zhi Zhou
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Xiang‐li Long
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| |
Collapse
|
12
|
|
13
|
Madeira CSP, Zavarize DG, Vieira GEG. Optimized adsorption onto biosolids-based activated carbon for tartrazine removal from wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:417-427. [PMID: 30802361 DOI: 10.1002/wer.1039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
This study investigates optimized tartrazine uptake by activated carbon prepared from biosolids (BBAC). Different tartrazine concentrations (10-20 mg/L), adsorbent dosages (1.0-2.0 g), pH (2.0-4.0), and contact times (60-120 min) were tested. These independent variables formed a 24 full factorial experiment arranged as central composite rotative design (CCRD). Response surface methodology (RSM) analyzed the responses of 50 experimental runs. Tartrazine removal efficiency fluctuated between 76.2% and 99.9%. The experimental data were best fitted by a quadratic model (R2 > 0.95, p > 0.0001). All variables exerted statistically significant (p < 0.05) effects on the tartrazine uptake (initial concentration, p = 0.0011; BBAC dosage, p = 0.0004; pH, p < 0.0001; contact time, p < 0.0001). Optimized tartrazine uptake efficiency of 97.4% can happen when variables mutually correlate at 10.1 mg/L of tartrazine concentration, 1.07 g of adsorbent dosage, 2.13 of pH, and 116.9 min of contact time. PRACTITIONER POINTS: Production of biosolids-based activated carbon (BBAC) is presented. Adsorptive affinity to tartrazine in aqueous solution was experimented. Experimental conditions optimized by Response Surface Methodology.
Collapse
Affiliation(s)
- Carla Suély P Madeira
- Department of Environmental Engineering, Federal University of Tocantins, Palmas, Brazil
| | - Danilo G Zavarize
- Department of Environmental Engineering, Federal University of Tocantins, Palmas, Brazil
| | - Gláucia Eliza G Vieira
- Department of Environmental Engineering, Federal University of Tocantins, Palmas, Brazil
| |
Collapse
|
14
|
Yan J, Xue Y, Long L, Zeng Y, Hu X. Adsorptive removal of As(V) by crawfish shell biochar: batch and column tests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34674-34683. [PMID: 30324365 DOI: 10.1007/s11356-018-3384-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
As a toxic and metalloid substance, excess arsenic (As) can cause serious harm to the environment and public health. In this work, crayfish shell biochar (CFS450) and modified biochar (MCFS450) were prepared to remove As(V) from aqueous solutions under various conditions. Compared to CFS450, MCFS450 had a higher specific surface area, better pore structure, and higher As(V) adsorption capacity. Based on the Langmuir model, its maximum As(V) adsorption capacity was 17.2 mg/g. The biochar had a large number of surface functional groups such as C-O, O-H, and -OH. After modification, a certain mass of ZnO nanoparticles existed on MCFS450, which increased positive charge on the surface and promoted the adsorption of As(V). As the temperature rose, the adsorption capacity increased, suggesting the adsorption was endothermic. Under low PH conditions, the adsorption effect was better. When Cl-, HCO3-, SO42-, and PO43- respectively existed, the adsorption capacity decreased, indicating that As(V) competed with other anions. The column adsorption experiments showed that Thomas, Yoon-Nelson, and Adams-Bohart models can be expressed as a unified model (EXY model). The EXY model can be used for the design of biochar-based filter for As(V) removal, providing a theoretical basis for practical production applications. Graphical abstract Experimental setup and results of column adsorption.
Collapse
Affiliation(s)
- Jinpeng Yan
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Yingwen Xue
- School of Civil Engineering, Wuhan University, Wuhan, China.
| | - Li Long
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Yifan Zeng
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Xiaolan Hu
- School of Civil Engineering, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Ahmad M, Ahmad M, Usman ARA, Al-Faraj AS, Abduljabbar AS, Al-Wabel MI. Biochar composites with nano zerovalent iron and eggshell powder for nitrate removal from aqueous solution with coexisting chloride ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25757-25771. [PMID: 28921403 DOI: 10.1007/s11356-017-0125-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 09/05/2017] [Indexed: 05/28/2023]
Abstract
Biochar (BC) was produced from date palm tree leaves and its composites were prepared with nano zerovalent iron (nZVI-BC) and hen eggshell powder (EP-BC). The produced BC and its composites were characterized by SEM, XRD, BET, and FTIR for surface structural, mineralogical, and chemical groups and tested for their efficiency for nitrate removal from aqueous solutions in the presence and absence of chloride ions. The incidence of graphene and nano zerovalent iron (Fe0) in the nZVI-BC composite was confirmed by XRD. The nZVI-BC composite possessed highest surface area (220.92 m2 g-1), carbon (80.55%), nitrogen (3.78%), and hydrogen (11.09%) contents compared to other materials. Nitrate sorption data was fitted well to the Langmuir (R 2 = 0.93-0.98) and Freundlich (R 2 = 0.90-0.99) isotherms. The sorption kinetics was adequately explained by the pseudo-second-order, power function, and Elovich models. The nZVI-BC composite showed highest Langmuir predicted sorption capacity (148.10 mg g-1) followed by EP-BC composite (72.77 mg g-1). In addition to the high surface area, the higher nitrate removal capacity of nZVI-BC composite could be attributed to the combination of two processes, i.e., chemisorption (outer-sphere complexation) and reduction of nitrate to ammonia or nitrogen by Fe0. The appearance of Fe-O stretching and N-H bonds in post-sorption FTIR spectra of nZVI-BC composite suggested the occurrence of redox reaction and formation of Fe compound with N, such as ferric nitrate (Fe(NO3)3·9H2O). Coexistence of chloride ions negatively influenced the nitrate sorption. The decrease in nitrate sorption with increasing chloride ion concentration was observed, which could be due to the competition of free active sites on the sorbents between nitrate and chloride ions. The nZVI-BC composite exhibited higher nitrate removal efficiency compared to other materials even in the presence of highest concentration (100 mg L-1) of coexisting chloride ion.
Collapse
Affiliation(s)
- Munir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mahtab Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Adel R A Usman
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
- Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Abdullah S Al-Faraj
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Adel S Abduljabbar
- Industrial Psychology, College of Education, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad I Al-Wabel
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia.
| |
Collapse
|
16
|
Wen D, Fang ZW, He H, Zhang C, Long XL. Production of NMSBA from NMST Catalyzed by Co/Mn/Br and HPW@C Modified with ZnCl2 Solution. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2018. [DOI: 10.1515/ijcre-2017-0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract2-nitro-4-methylsulfonylbenzoic acid (NMSBA) can be produced by oxidizing 2-nitro-4-methylsulfonyltoluene (NMST) with air catalyzed by Co/Mn/Br and phosphotungstic acid(HPW) loaded on activated carbon. This paper reports that the catalytic ability of the HPW@C catalyst in the oxidation of NMST to NMSBA can be improved by treating the activated carbon with ZnCl2solution. The best modification condition with ZnCl2solution is impregnating the carbon sample in 0.1 mol/L solution for 6 h followed by calcination at 600 °C for 4 h. The increase of the surface area and the acidic groups on the carbon surface enhances the catalytic ability of the HPW@C catalyst. The mesopores play an important role in the catalytic oxidation of NMST to NMSBA.
Collapse
|
17
|
Yin Q, Ren H, Wang R, Zhao Z. Evaluation of nitrate and phosphate adsorption on Al-modified biochar: Influence of Al content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:895-903. [PMID: 29728000 DOI: 10.1016/j.scitotenv.2018.03.091] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Biochars with different Al contents (i.e., 5, 10, 15, and 20 wt%) were prepared to evaluate their adsorption capacities for nitrate (NO3-) and phosphate (PO43-) from eutrophic water. Several techniques, including N2 adsorption-desorption, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectrometry, were applied to characterize the physical-chemical properties of the biochars. We found that the NO3- and PO43- adsorptions significantly improved on the Al-modified biochars because of their multifunctional and surface charge properties. In single-solute adsorption, 15 Al/BC and 20 Al/BC exhibited optimal NO3- and PO43- adsorption capacities, respectively. In bi-solute coadsorption, the PO43- adsorption on the biochar was less affected with the coexistence of NO3-, whereas the coexistence of PO43- had a significant impact on the NO3- adsorption. The optimal solution pH for NO3- adsorption was 6, and pH < 6 was advantageous to PO43- adsorption. In the kinetic study, the pseudo-second-order model could describe the NO3- and PO43- adsorptions on biochar well, indicating that chemical adsorption was the main adsorption mechanism. The Langmuir-Freundlich model agreed well with the NO3- and PO43- adsorptions on the biochars, and the maximum adsorption capacities for NO3- and PO43- reached 89.58 mg/g and 57.49 mg/g, respectively. Therefore, the Al-modified biochar was a good choice for the remediation of eutrophic water.
Collapse
Affiliation(s)
- Qianqian Yin
- Department of Power Engineering, North China Electric Power University, Baoding 071003, PR China.
| | - Huaipu Ren
- State Grid Hebei Tending Co., Ltd., Shijiazhuang 050000, PR China
| | - Ruikun Wang
- Department of Power Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Zhenghui Zhao
- Department of Power Engineering, North China Electric Power University, Baoding 071003, PR China
| |
Collapse
|
18
|
Paramashivam D, Clough TJ, Carlton A, Gough K, Dickinson N, Horswell J, Sherlock RR, Clucas L, Robinson BH. The effect of lignite on nitrogen mobility in a low-fertility soil amended with biosolids and urea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:601-608. [PMID: 26615483 DOI: 10.1016/j.scitotenv.2015.11.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Lignite has been proposed as a soil amendment that reduces nitrate (NO3(-)) leaching from soil. Our objective was to determine the effect of lignite on nitrogen (N) fluxes from soil amended with biosolids or urea. The effect of lignite on plant yield and elemental composition was also determined. Batch sorption and column leaching experiments were followed by a lysimeter trial where a low fertility soil was amended with biosolids (400 kg N/ha equivalent) and urea (200 kg N/ha equivalent). Treatments were replicated three times, with and without lignite addition (20 t/ha equivalent). Lignite did not reduce NO3(-) leaching from soils amended with either biosolids or urea. While lignite decreased NO3(-) leaching from an unamended soil, the magnitude of this effect was not significant in an agricultural context. Furthermore, lignite increased cumulative N2O production from soils receiving urea by 90%. Lignite lessened the beneficial growth effects of adding biosolids or urea to soil. Further work could investigate whether coating urea granules with lignite may produce meaningful environmental benefits.
Collapse
Affiliation(s)
- Dharini Paramashivam
- Department of Soil and Physical Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand
| | - Tim J Clough
- Department of Soil and Physical Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand
| | - Anna Carlton
- Department of Soil and Physical Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand
| | - Kelsi Gough
- Department of Soil and Physical Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand
| | - Nicholas Dickinson
- Department of Ecology, Lincoln University, PO Box 84, Lincoln 7647, New Zealand
| | - Jacqui Horswell
- Environmental Science and Research, Kenepuru Science Centre, PO Box 50-348, Porirua 5240, New Zealand
| | - Robert R Sherlock
- Department of Soil and Physical Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand
| | - Lynne Clucas
- Department of Soil and Physical Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand
| | - Brett H Robinson
- Department of Soil and Physical Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand.
| |
Collapse
|
19
|
Suriyaraj SP, Selvakumar R. Advances in nanomaterial based approaches for enhanced fluoride and nitrate removal from contaminated water. RSC Adv 2016. [DOI: 10.1039/c5ra24789f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Various nanomaterials for fluoride and nitrate removal from contaminated water.
Collapse
Affiliation(s)
- S. P. Suriyaraj
- Nanobiotechnology Laboratory
- PSG Institute of Advanced Studies
- Coimbatore 641004
- India
| | - R. Selvakumar
- Nanobiotechnology Laboratory
- PSG Institute of Advanced Studies
- Coimbatore 641004
- India
| |
Collapse
|
20
|
Zhao T, Feng T. Application of modified chitosan microspheres for nitrate and phosphate adsorption from aqueous solution. RSC Adv 2016. [DOI: 10.1039/c6ra17474d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modified chitosan microspheres were prepared by inverse suspension crosslinking and used for nitrate and phosphate adsorption from aqueous solution. Their surface was coarse and porous compared to pure chitosan microspheres and they were about 100 μm in size.
Collapse
Affiliation(s)
- Tingting Zhao
- College of Resources and Environmental Engineering
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Tao Feng
- College of Resources and Environmental Engineering
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| |
Collapse
|
21
|
Naushad M, Khan MA, ALOthman ZA, Khan MR. Adsorptive removal of nitrate from synthetic and commercially available bottled water samples using De-Acidite FF-IP resin. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Adsorptive removal of nitrate from aqueous solution by polyacrylonitrile–alumina nanoparticle mixed matrix hollow-fiber membrane. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Zhang J, Zhang P, Zhang S, Zhou Q. Comparative Study on the Adsorption of Tartrazine and Indigo Carmine onto Maize Cob Carbon. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2013.863340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Yusuf M, Chuah L, Khan MA, Choong TSY. Adsorption of Nickel on Electric Arc Furnace Slag: Batch and Column Studies. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2013.843099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Loganathan P, Vigneswaran S, Kandasamy J. Enhanced removal of nitrate from water using surface modification of adsorbents--a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 131:363-374. [PMID: 24211565 DOI: 10.1016/j.jenvman.2013.09.034] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 09/11/2013] [Accepted: 09/14/2013] [Indexed: 06/02/2023]
Abstract
Elevated concentration of nitrate results in eutrophication of natural water bodies affecting the aquatic environment and reduces the quality of drinking water. This in turn causes harm to people's health, especially that of infants and livestock. Adsorbents with the high capacity to selectively adsorb nitrate are required to effectively remove nitrate from water. Surface modifications of adsorbents have been reported to enhance their adsorption of nitrate. The major techniques of surface modification are: protonation, impregnation of metals and metal oxides, grafting of amine groups, organic compounds including surfactant coating of aluminosilicate minerals, and heat treatment. This paper reviews current information on these techniques, compares the enhanced nitrate adsorption capacities achieved by the modifications, and the mechanisms of adsorption, and presents advantages and drawbacks of the techniques. Most studies on this subject have been conducted in batch experiments. These studies need to include continuous mode column trials which have more relevance to real operating systems and pilot-plant trials. Reusability of adsorbents is important for economic reasons and practical treatment applications. However, only limited information is available on the regeneration of surface modified adsorbents.
Collapse
Affiliation(s)
- Paripurnanda Loganathan
- Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | | | | |
Collapse
|
26
|
Dudwadkar A, Shenoy N, Joshi JM, Kumar SD, Rao H, Reddy AVR. Application of Ion Chromatography for the Determination of Nitrate in Process Streams of Thermal Denitration Plant. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.807831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|