1
|
Ren Y, Ye P, Zhang L, Zhu L, Zhu H, Wang L, Lei J, Liu J. Polymeric monolithic columns based on natural wood for rapid purification of targeted protein. Int J Biol Macromol 2024; 270:132310. [PMID: 38740162 DOI: 10.1016/j.ijbiomac.2024.132310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
With multiscale hierarchical structure, wood is suitable for a range of high-value applications, especially as a chromatographic matrix. Here, we have aimed to provide a weak anion-exchange polymeric monolithic column based on natural wood with high permeability and stability for effectively separating the targeted protein. The wood-polymeric monolithic column was synthesized by in situ polymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in wood, and coupled with diethylaminoethyl hydrochloride. The wood-polymeric monolithic column can be integrated with fast-protein liquid chromatography for large-scale protein purification. According to the results, the wood-polymeric monolithic column showed high hydrophilicity, permeability and stability. Separation experiments verified that the wood-polymeric monolithic column could purify the targeted protein (spike protein of SARS-COV-2 and ovalbumin) from the mixed proteins by ion exchange, and the static adsorption capacity was 33.04 mg mL-1 and the dynamic adsorption capacity was 24.51 mg mL-1. In addition, the wood-polymerized monolithic column had good stability, and a negligible decrease in the dynamic adsorption capacity after 20 cycles. This wood-polymerized monolithic column can provide a novel, efficient, and green matrix for monolithic chromatographic columns.
Collapse
Affiliation(s)
- Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Poddar S, Sharmeen S, Hage DS. Affinity monolith chromatography: A review of general principles and recent developments. Electrophoresis 2021; 42:2577-2598. [PMID: 34293192 PMCID: PMC9536602 DOI: 10.1002/elps.202100163] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.
Collapse
Affiliation(s)
- Saumen Poddar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
3
|
Current trends in affinity-based monoliths in microextraction approaches: A review. Anal Chim Acta 2019; 1084:1-20. [DOI: 10.1016/j.aca.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
|
4
|
Acquah C, Chan YW, Pan S, Yon LS, Ongkudon CM, Guo H, Danquah MK. Characterisation of aptamer-anchored poly(EDMA-co-GMA) monolith for high throughput affinity binding. Sci Rep 2019; 9:14501. [PMID: 31601836 PMCID: PMC6787036 DOI: 10.1038/s41598-019-50862-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/13/2019] [Indexed: 11/17/2022] Open
Abstract
Immobilisation of aptameric ligands on solid stationary supports for effective binding of target molecules requires understanding of the relationship between aptamer-polymer interactions and the conditions governing the mass transfer of the binding process. Herein, key process parameters affecting the molecular anchoring of a thrombin-binding aptamer (TBA) onto polymethacrylate monolith pore surface, and the binding characteristics of the resulting macroporous aptasensor were investigated. Molecular dynamics (MD) simulations of the TBA-thrombin binding indicated enhanced Guanine 4 (G4) structural stability of TBA upon interaction with thrombin in an ionic environment. Fourier-transform infrared spectroscopy and thermogravimetric analyses were used to characterise the available functional groups and thermo-molecular stability of the immobilised polymer generated with Schiff-base activation and immobilisation scheme. The initial degradation temperature of the polymethacrylate stationary support increased with each step of the Schiff-base process: poly(Ethylene glycol Dimethacrylate-co-Glycidyl methacrylate) or poly(EDMA-co-GMA) [196.0 °C (±1.8)]; poly(EDMA-co-GMA)-Ethylenediamine [235.9 °C (±6.1)]; poly(EDMA-co-GMA)-Ethylenediamine-Glutaraldehyde [255.4 °C (±2.7)]; and aptamer-modified monolith [273.7 °C (±2.5)]. These initial temperature increments reflected in the associated endothermic energies were determined with differential scanning calorimetry. The aptameric ligand density obtained after immobilisation was 480 pmol/μL. Increase in pH and ionic concentration affected the surface charge distribution and the binding characteristics of the aptamer-modified disk-monoliths, resulting in the optimum binding pH and ionic concentration of 8.0 and 5 mM Mg2+, respectively. These results are critical in understanding and setting parametric constraints indispensable to develop and enhance the performance of aptasensors.
Collapse
Affiliation(s)
- Caleb Acquah
- Department of Chemical Engineering, Curtin University, Sarawak, 98009, Malaysia.,School of Nutrition Science, Faculty of Health Science, University of Ottawa, K1N 6N5, Ontario, Canada
| | - Yi Wei Chan
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| | - Lau Sie Yon
- Department of Chemical Engineering, Curtin University, Sarawak, 98009, Malaysia
| | - Clarence M Ongkudon
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Haobo Guo
- Department of Computer Science and Engineering, University of Tennessee, Chattanooga, TN, 37403, United States.,SimCenter, University of Tennessee, Chattanooga, TN, 37403, United States
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN, 37403, United States.
| |
Collapse
|