1
|
Nidheesh PV, Kumar M, Venkateshwaran G, Ambika S, Bhaskar S, Vinay, Ghosh P. Conversion of locally available materials to biochar and activated carbon for drinking water treatment. CHEMOSPHERE 2024; 353:141566. [PMID: 38428536 DOI: 10.1016/j.chemosphere.2024.141566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/16/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
For environmental sustainability and to achieve sustainable development goals (SDGs), drinking water treatment must be done at a reasonable cost with minimal environmental impact. Therefore, treating contaminated drinking water requires materials and approaches that are inexpensive, produced locally, and effortlessly. Hence, locally available materials and their derivatives, such as biochar (BC) and activated carbon (AC) were investigated thoroughly. Several researchers and their findings show that the application of locally accessible materials and their derivatives are capable of the adsorptive removal of organic and inorganic contaminants from drinking water. The application of locally available materials such as lignocellulosic materials/waste and its thermo-chemically derived products, including BC and AC were found effective in the treatment of contaminated drinking water. Thus, this review aims to thoroughly examine the latest developments in the use of locally accessible feedstocks for tailoring BC and AC, as well as their features and applications in the treatment of drinking water. We attempted to explain facts related to the potential mechanisms of BC and AC, such as complexation, co-precipitation, electrostatic interaction, and ion exchange to treat water, thereby achieving a risk-free remediation approach to polluted water. Additionally, this research offers guidance on creating efficient household treatment units based on the health risks associated with customized adsorbents and cost-benefit analyses. Lastly, this review work discusses the current obstacles for using locally accessible materials and their thermo-chemically produced by-products to purify drinking water, as well as the necessity for technological interventions.
Collapse
Affiliation(s)
- P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR - National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - G Venkateshwaran
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - S Ambika
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - S Bhaskar
- Department of Civil Engineering, National Institute of Technology, Calicut, NIT Campus, P.O 673 601, Kozhikode, India
| | - Vinay
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India; Industrial Pollution Control-IV Division, Central Pollution Control Board (CPCB), Ministry of Environment, Forest and Climate Change (MoEF&CC), Parivesh Bhawan, East Arjun Nagar, Delhi, 110032, India
| | - Pooja Ghosh
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
2
|
Nayak A, Chaudhary P, Bhushan B, Ghai K, Singh S, Sillanpää M. Removal of emergent pollutants: A review on recent updates and future perspectives on polysaccharide-based composites vis-à-vis traditional adsorbents. Int J Biol Macromol 2024; 258:129092. [PMID: 38171444 DOI: 10.1016/j.ijbiomac.2023.129092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
There is a growing incidence in the presence of emergent pollutants like the pesticides and pharmaceuticals in water bodies. The matter of environmental concern is their synthetic and persistent nature which has resulted in induced toxicity/damaging effect to the vital functioning of the different organs in the aquatic community. Traditional adsorbents have exhibited limitations like low stability and minimum reuse ability. Composites of such adsorbents with polysaccharides have demonstrated distinct features like improved surface area, porosity, adsorptivity; improved reusability and structural integrity; improved mechanical strength, thermal stability when applied for the removal of the emergent pollutants. The biocompatibility and biodegradability of such fabricated composites is established; thereby making the water treatment process cost effective, sustainable and environmentally friendly. The present review has dealt with an in-depth, up-dated literature compilation of traditional as well as polysaccharide based composite adsorbents and addressed their performance evaluation for the removal of pharmaceuticals and pesticides from wastewater. A comparative study has revealed the merits of polysaccharide based composites and discussions have been made with a focus on future research directions in the related area.
Collapse
Affiliation(s)
- Arunima Nayak
- Department of Chemistry, Graphic Era University, 248002 Dehradun, India.
| | - Priya Chaudhary
- Department of Chemistry, Graphic Era University, 248002 Dehradun, India
| | - Brij Bhushan
- Department of Chemistry, Graphic Era University, 248002 Dehradun, India
| | - Kapil Ghai
- Department of Chemistry, Graphic Era Hill University, 248002 Dehradun, India
| | - Seema Singh
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007,India
| | - Mika Sillanpää
- Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248007, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Dong M, He L, Jiang M, Zhu Y, Wang J, Gustave W, Wang S, Deng Y, Zhang X, Wang Z. Biochar for the Removal of Emerging Pollutants from Aquatic Systems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1679. [PMID: 36767042 PMCID: PMC9914318 DOI: 10.3390/ijerph20031679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water contaminated with emerging pollutants has become a serious environmental issue globally. Biochar is a porous and carbon-rich material produced from biomass pyrolysis and has the potential to be used as an integrated adsorptive material. Many studies have shown that biochar is capable to adsorb emerging pollutants from aquatic systems and could be used to solve the water pollution problem. Here, we provided a dual perspective on removing emerging pollutants from aquatic systems using biochar and analyzed the emerging pollutant removal efficiency from the aspects of biochar types, pollutant types and coexistence with heavy metals, as well as the associated mechanisms. The potential risks and future research directions of biochar utilization are also presented. This review aims to assist researchers interested in using biochar for emerging pollutants remediation in aquatic systems and facilitate research on emerging pollutants removal, thereby reducing their environmental risk.
Collapse
Affiliation(s)
- Mingying Dong
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lizhi He
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, China
| | - Mengyuan Jiang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau 4912, Bahamas
| | - Shuo Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Deng
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
4
|
Ahmad A, Priyadarshini M, Yadav S, Ghangrekar MM, Surampalli RY. The potential of biochar-based catalysts in advanced treatment technologies for efficacious removal of persistent organic pollutants from wastewater: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Cheng N, Wang B, Wu P, Lee X, Xing Y, Chen M, Gao B. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116448. [PMID: 33486256 DOI: 10.1016/j.envpol.2021.116448] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 05/11/2023]
Abstract
Emerging contaminants (ECs), a group of relatively low-concentration but high-toxicity pollutants in the environment, have attracted widespread attention in recent years. These trace pollutants can be enriched in organisms and finally transferred to human bodies, posing a potential hazard to public health. Biochar, a low-cost and high-efficiency adsorbent, has been used to treat ECs in water. However, due to certain limitations of pristine biochar, such as poor adsorption capacity, narrow adsorption range, and other shortcomings, it is necessary to modify biochar to improve its applications in water treatment for ECs. Currently, there are a lot of reports on the removal of ECs from water by modified biochar. These studies explored different modification methods to functionalize biochar with various physicochemical properties, which resulted in distinct adsorption effects, behaviors and mechanisms of modified biochar on different ECs. There is a need to systematically review and digest the knowledge on the adsorption of ECs on modified biochar. In this review, recent biochar modification methods used in ECs removal are firstly summarized, and the adsorption performance and mechanisms of modified biochar on typical ECs are then systematically reviewed. Finally, the main research directions and trends, as well as recommendations and suggestions for future development are pointed out.
Collapse
Affiliation(s)
- Ning Cheng
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Pan Wu
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Ying Xing
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Miao Chen
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|