1
|
Şenol ZM, El Messaoudi N, Ciğeroglu Z, Miyah Y, Arslanoğlu H, Bağlam N, Kazan-Kaya ES, Kaur P, Georgin J. Removal of food dyes using biological materials via adsorption: A review. Food Chem 2024; 450:139398. [PMID: 38677180 DOI: 10.1016/j.foodchem.2024.139398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
It is alarming that synthetic food dyes (FD) are widely used in various industries and that these facilities discharge their wastewater into the environment without treating it. FDs mixed into industrial wastewater pose a threat to the environment and human health. Therefore, removing FDs from wastewater is very important. This review explores the burgeoning field of FD removal from wastewater through adsorption using biological materials (BMs). By synthesizing a wealth of research findings, this comprehensive review elucidates the diverse array of BMs employed, ranging from algae and fungi to agricultural residues and microbial biomass. Furthermore, this review investigates challenges in practical applications, such as process optimization and scalability, offering insights into bridging the gap between laboratory successes and real-world implementations. Harnessing the remarkable adsorptive potential of BMs, this review presents a roadmap toward transformative solutions for FD removal, promising cleaner and safer production practices in the food and beverage industry.
Collapse
Affiliation(s)
- Zeynep Mine Şenol
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zeynep Ciğeroglu
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Usak University, Usak 64300, Turkey
| | - Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez/Meknes, Morocco
| | - Hasan Arslanoğlu
- Çanakkale Onsekiz Mart University, Engineering Faculty, Chemical Engineering, Çanakkale, Turkey
| | - Nurcan Bağlam
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey
| | - Emine Sena Kazan-Kaya
- Chemical Engineering Department, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Parminder Kaur
- Circular Economy Solutions (KTR), Geological Survey of Finland, 70210 Kuopio, Finland
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 #55-66, Barranquilla, Atlántico, Colombia
| |
Collapse
|
2
|
Adenan NH, Lim YY, Ting ASY. Removal of triphenylmethane dyes by Streptomyces bacillaris: A study on decolorization, enzymatic reactions and toxicity of treated dye solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115520. [PMID: 35717698 DOI: 10.1016/j.jenvman.2022.115520] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
This study revealed Streptomyces bacillaris as an efficient biological agent for the removal of triphenylmethane (TPM) dyes. The isolate decolorized Malachite Green (MG), Methyl Violet (MV), Crystal Violet (CV), and Cotton Blue (CB) effectively. S. bacillaris in the treated dye solutions were analyzed for enzyme production, and the cell biomass was observed for functional groups and cell morphology. The treated dye solutions were also analyzed for degraded compounds and their toxicity. Results revealed high decolorization activities for MG (94.7%), MV (91.8%), CV (86.6%), CB (68.4%), attributed to both biosorption and biodegradation. In biosorption, dye molecules interacted with the hydroxyl, amino, phosphoryl, and sulfonyl groups present on the cell surface. Biodegradation was associated with induced activities of MnP and NADH-DCIP reductase, giving rise to various simpler compounds. The degraded compounds in the treated dyes were less toxic, as revealed by the significant growth of Vigna radiata in the phytotoxicity test. There were no significant changes in cell morphology before and after use in dye solutions, suggesting S. bacillaris is less susceptible to dye toxicity. This study concluded that S. bacillaris demonstrated effective removal of TPM dyes via biosorption and biodegradation, rendering the treated dyes less toxic than untreated dyes. Findings in this study enabled further explorations into the potential application of lesser-known actinobacteria (i.e. Streptomyces sp.) for dye removal.
Collapse
Affiliation(s)
- Nurul Hidayah Adenan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
| | - Yau Yan Lim
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
3
|
Kinetics and equilibrium study for the biosorption of lanthanum by Penicillium simplicissimum INCQS 40,211. 3 Biotech 2021; 11:460. [PMID: 34722100 DOI: 10.1007/s13205-021-03004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/26/2021] [Indexed: 01/23/2023] Open
Abstract
Lanthanum (La) is a light rare-earth element that plays an essential role in manufacturing technological products, clean technologies, medical products, electron cathodes, scintillators, fluorescent lamps, and fertilizers. This study is the first investigation of La3+ biosorption using inactive lyophilized biomass from Penicillium simplicissimum INCQS 40,211. The maximum sorption capacity (qmax) for P. simplicissimum was 7.81 mg g-1. La 3+ biosorption followed the Freundlich model, where the biosorption system possibly multilayer coverage of P. simplicissimum by lanthanum ions. The kinetic data for the adsorption process obeyed a pseudo-second-order (R 2 > 0.92), indicating chemical sorption. The results indicated that inactive lyophilized biomass from Penicillium simplicissimum INCQS 40211are an excellent candidate for removing light rare-earth elements from aquatic environments.
Collapse
|
4
|
Shanmugam S, Karthik K, Veerabagu U, Hari A, Swaminathan K, Al-Kheraif AA, Whangchai K. Bi-model cationic dye adsorption by native and surface-modified Trichoderma asperellum BPL MBT1 biomass: From fermentation waste to value-added biosorbent. CHEMOSPHERE 2021; 277:130311. [PMID: 33774249 DOI: 10.1016/j.chemosphere.2021.130311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
In this study, we aimed to assess the possible reusability of native and surface-modified waste biomass of a novel ascomycetes fungi Trichoderma asperellum BPL MBT1 for the adsorption of triphenylmethane dyes. Spent biomass obtained from fermentation medium has been applied in the uptake of model cationic dyes viz., crystal violet and malachite green. Optimization of experimental parameters by batch mode studies revealed that dye adsorption is influenced by medium pH time, initial concentration of dyes, and adsorbent dosage. It was observed that pH 10 was optimum for cationic dye adsorption. Further, the adsorption process obeyed the bi-model (Langmuir-Freundlich model) isotherm and adhered to pseudo-second-order kinetics. The involvement of ion exchange as the dominant mechanism of dye adsorption was indicated by the mean free energy obtained from Dubinin-Radushkevich isotherm. Cellular morphology and the involved functional groups were studied by scanning electron microscopy and Fourier transform infrared spectroscopy that revealed the presence of carbon and oxygen containing groups on the surface. Maximum desorption efficiency was achieved using a 0.1 M solution of HCl and the stability of the biosorbent was confirmed through reusability analysis. Our results confirm the applicability of both native and surface-modified T. asperellum BPL MBT1 biomass as a potential biosorbent for the sustainable wastewater treatment and safe dye disposal.
Collapse
Affiliation(s)
- Sabarathinam Shanmugam
- Bioprocess Laboratory, Department of Microbial Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India.
| | - Kumaravel Karthik
- Division of Environment, United Carbon Solutions Pvt Ltd, Tiruppur, Tamil Nadu, India
| | | | - Anjana Hari
- Bioprocess Laboratory, Department of Microbial Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Krishnaswamy Swaminathan
- Bioprocess Laboratory, Department of Microbial Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Abdulaziz A Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P. O. Box: 10219, Riyadh, 11433, Saudi Arabia
| | - Kanda Whangchai
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
5
|
Trichoderma Biomass as an Alternative for Removal of Congo Red and Malachite Green Industrial Dyes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11010448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study evaluated the removal efficiency of two dyes, Congo red (CR) and malachite green (MG), using either fresh or dry fungal biomass of two species of Trichoderma (T. virens and T. viride) and activated carbon. After 24 h, the CR removal efficiency obtained with fresh biomass was higher than that obtained with activated carbon. For the MG dye, the average removal with activated carbon (99%) was higher than those obtained with dry and fresh biomass of T. viride and T. virens. Experimental results for fresh and dry fungal biomass showed a good correlation with Langmuir isotherms. The adsorption rates of CR and MG by of T. virens and T. viride can be more appropriately described using the pseudo-second-order rate. We found an adsorption capacity of 81.82 mg g−1 for T. virens with MG dye. Results show that fresh or dry biomass of T. virens can represent a simple and cost-effective alternative for removing industrial dyes such as CR and MG.
Collapse
|
6
|
Gao T, Qin D, Zuo S, Peng Y, Xu J, Yu B, Song H, Dong J. Decolorization and detoxification of triphenylmethane dyes by isolated endophytic fungus, Bjerkandera adusta SWUSI4 under non-nutritive conditions. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00340-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Biodecolorization by microorganisms is a potential treatment technique because they seem to be environmentally safe. In the present study, the decolorization and detoxification of cotton blue, crystal violet, malachite green and methyl violet by endophytic fungi were investigated. Preliminary screening result indicated that SWUSI4, identified as Bjerkandera adusta, demonstrated the best decolorization for the four TPM dyes within 14 days. Furthermore, optimization result demonstrated the decolorization rate could reach above 90% at 24 h by live cells of isolate SWUSI4 when 4 g biomass was added into 100-mL dyes solution with the concentration 50 mg/L and shaking (150 rpm) conditions. Moreover, decolorization mechanism analysis shows that the decolorization was caused by the isolate SWUSI4 that mainly includes both absorption of biomass and/or degradation of enzymes. Biosorption of dyes was attributed to binding to hydroxyl, amino, phosphoryl alkane, and ester–lipids groups based on Fourier transform infrared (FTIR) analyses. The biodegradation potential of SWUSI4 was further suggested by the change of peaks in the ultraviolet–visible (UV–vis) spectra and detection of manganese peroxidase and lignin peroxidase activities. Finally, the phytotoxicity test confirmed that the toxicity of TPM dyes after treatment with SWUSI4 was significantly lower than that before treatment. These results indicate that an endophytic SWUSI4 could be used as a potential TPM dyes adsorption and degradation agent, thus facilitating the study of the plant–endophyte symbiosis in the bioremediation processes.
Collapse
|