1
|
The Role of Connexin in Ophthalmic Neovascularization and the Interaction between Connexin and Proangiogenic Factors. J Ophthalmol 2022; 2022:8105229. [PMID: 35783340 PMCID: PMC9242797 DOI: 10.1155/2022/8105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/11/2022] [Indexed: 12/02/2022] Open
Abstract
The formation of new blood vessels is an important physiological process that occurs during development. When the body is injured, new blood vessel formation helps the body recuperate by supplying more oxygen and nutrients. However, this mechanism can have a negative effect. In ophthalmologic diseases, such as corneal new blood vessels, neonatal vascular glaucoma, and diabetes retinopathy, the formation of new blood vessels has become a critical component in patient survival. Connexin is a protein that regulates the cellular and molecular material carried by cells. It has been demonstrated that it is widely expressed in vascular endothelial cells, where it forms a slit connection between adjacent cells to promote cell-cell communication via hemichannels, as well as substance exchange into intracellular environments. Numerous studies have demonstrated that connexin in vascular endothelial cells plays an important role in angiogenesis and vascular leakage. The purpose of this study was to investigate the effect between the angiogenesis-associated factor and the connexin. It also reveals the effect of connexin on ophthalmic neovascularization.
Collapse
|
2
|
Lou YX, Wang ZZ, Xia CY, Mou Z, Ren Q, Liu DD, Zhang X, Chen NH. The protective effect of ginsenoside Rg1 on depression may benefit from the gap junction function in hippocampal astrocytes. Eur J Pharmacol 2020; 882:173309. [PMID: 32598952 DOI: 10.1016/j.ejphar.2020.173309] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/12/2023]
Abstract
Studies have shown that the ginsenoside Rg1 can improve depressive symptoms in vitro and in vivo. However, the efficacy of Rg1on the hippocampal astrocyte gap junctions in depression are unclear. We mainly aimed to explore the relationship between Rg1, hippocampal astrocyte gap junctions and depression. Using primary cultured astrocytes, corticosterone (CORT) was used to induce stress. CORT (100 μM) significantly reduced the survival rate in astrocytes, and this effect was prevented by additional Rg1 administration. Interestingly, the gap junction blocker carbenoxolone (CBX) was able to revert this Rg1 effect. In in vivo models, one group was exposed to chronic unpredictable stress (CUS) for 47 days, while another group was bilaterally injected with CBX (100 μM) into the hippocampal CA1 region. Rats treated with Rg1 (20 mg/kg) showed an improvement in the sucrose preference and the forced swimming test in both models, indicating an antidepressive activity of Rg1. The levels of astrocyte gap junction connexin 43 (Cx43) were detected by immunofluorescence (IF) and western blotting. The levels of glial fibrillary acidic protein (GFAP) were detected by IF. The gap junctions in the hippocampal CA1 area were evaluated using dye transfer and electron microscopy. The reduction in Cx43 expression, the decrease in the Cx43 to GFAP ratio, the shorter dye diffusion distance, and the abnormal ultrastructure of gap junctions in rats exposed to CUS were markedly alleviated by concomitant Rg1 treatment. Taken together, the ginsenoside Rg1 could improve depression-like behavior in rats induced by astrocyte gap junction dysfunction in the hippocampus.
Collapse
Affiliation(s)
- Yu-Xia Lou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zheng Mou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian Ren
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dan-Dan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xin Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
3
|
Vitale ML, Pelletier RM. The anterior pituitary gap junctions: potential targets for toxicants. Reprod Toxicol 2018; 79:72-78. [PMID: 29906538 DOI: 10.1016/j.reprotox.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/16/2023]
Abstract
The anterior pituitary regulates endocrine organs and physiological activities in the body. Environmental pollutants and drugs deleterious to the endocrine system may affect anterior pituitary activity through direct action on anterior pituitary cells. Within the gland, endocrine and folliculostellate cells are organized into and function as individual tridimensional networks, each network regulating its activity by coordinating the connected cells' responses to physiological or pathological cues. The gap junctions connecting endocrine cells and/or folliculostellate cells allow transmission of information among cells that is necessary for adequate network function. Toxicants may affect gap junctions as well as the physiology of the anterior pituitary. However, whether toxicants effects on anterior pituitary hormone secretion involve gap junctions is unknown. The folliculostellate cell gap junctions are sensitive to hormones, cytokines and growth factors. These cells may be an interesting experimental model for evaluating whether toxicants target anterior pituitary gap junctions.
Collapse
Affiliation(s)
- María Leiza Vitale
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC Canada.
| | - R-Marc Pelletier
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC Canada
| |
Collapse
|