1
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Brough S, Alizadeh M. Recent perspectives on the synergy of mesenchymal stem cells with micro/nano strategies in peripheral nerve regeneration-a review. Front Bioeng Biotechnol 2024; 12:1401512. [PMID: 39050683 PMCID: PMC11266111 DOI: 10.3389/fbioe.2024.1401512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Despite the intrinsic repair of peripheral nerve injury (PNI), it is important to carefully monitor the process of peripheral nerve repair, as peripheral nerve regeneration is slow and incomplete in large traumatic lesions. Hence, mesenchymal stem cells (MSCs) with protective and regenerative functions are utilized in synergy with innovative micro/nano technologies to enhance the regeneration process of peripheral nerves. Nonetheless, as MSCs are assessed using standard regenerative criteria including sensory-motor indices, structural features, and morphology, it is challenging to differentiate between the protective and regenerative impacts of MSCs on neural tissue. This study aims to analyze the process of nerve regeneration, particularly the performance of MSCs with and without synergistic approaches. It also focuses on the paracrine secretions of MSCs and their conversion into neurons with functional properties that influence nerve regeneration after PNI. Furthermore, the study explores new ideas for nerve regeneration after PNI by considering the synergistic effect of MSCs and therapeutic compounds, neuronal cell derivatives, biological or polymeric conduits, organic/inorganic nanoparticles, and electrical stimulation. Finally, the study highlights the main obstacles to developing synergy in nerve regeneration after PNI and aims to open new windows based on recent advances in neural tissue regeneration.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Brough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Liu G, Ma M, Meng H, Liu J, Zheng Y, Peng J, Wei S, Sun Y, Wang Y, Xie Y, Li J. In-situ self-assembly of bacterial cellulose/poly(3,4-ethylenedioxythiophene)-sulfonated nanofibers for peripheral nerve repair. Carbohydr Polym 2022; 281:119044. [DOI: 10.1016/j.carbpol.2021.119044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
|
3
|
Yang Z, Zheng C, Zhang F, Lin B, Cao M, Tian X, Zhang J, Zhang X, Shen J. Magnetic resonance imaging of enhanced nerve repair with mesenchymal stem cells combined with microenvironment immunomodulation in neurotmesis. Muscle Nerve 2020; 61:815-825. [PMID: 32170960 DOI: 10.1002/mus.26862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The immuno-microenvironment of injured nerves adversely affects mesenchymal stem cell (MSC) therapy for neurotmesis. Magnetic resonance imaging (MRI) can be used noninvasively to monitor nerve degeneration and regeneration. The aim of this study was to investigate nerve repair after MSC transplantation combined with microenvironment immunomodulation in neurotmesis by using multiparametric MRI. METHODS Rats with sciatic nerve transection and surgical coaptation were treated with MSCs combined with immunomodulation or MSCs alone. Serial multiparametric MRI examinations were performed over an 8-week period after surgery. RESULTS Nerves treated with MSCs combined with immunomodulation showed better functional recovery, rapid recovery of nerve T2, fractional anisotropy and radial diffusivity values, and more rapid restoration of the fiber tracks than nerves treated with MSCs alone. DISCUSSION Transplantation of MSCs in combination with immunomodulation can exert a synergistic repair effect on neurotmesis, which can be monitored by multiparametric MRI.
Collapse
Affiliation(s)
- Zehong Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chushan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Binglin Lin
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minghui Cao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuwei Tian
- Department of Radiology, The First People's Hospital of Kashgar, Kashgar, China
| | - Jingzhong Zhang
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Bolandghamat S, Behnam-Rassouli M. Recent Findings on the Effects of Pharmacological Agents on the Nerve Regeneration after Peripheral Nerve Injury. Curr Neuropharmacol 2020; 18:1154-1163. [PMID: 32379588 PMCID: PMC7709152 DOI: 10.2174/1570159x18666200507084024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are accompanied with neuropathic pain and functional disability. Despite improvements in surgical repair techniques in recent years, the functional recovery is yet unsatisfied. Indeed a successful nerve repair depends not only on the surgical strategy but also on the cellular and molecular mechanisms involved in traumatic nerve injury. In contrast to all strategies suggested for nerve repair, pharmacotherapy is a cheap, accessible and non-invasive treatment that can be used immediately after nerve injury. This study aimed to review the effects of some pharmacological agents on the nerve regeneration after traumatic PNI evaluated by functional, histological and electrophysiological assessments. In addition, some cellular and molecular mechanisms responsible for their therapeutic actions, restricted to neural tissue, are suggested. These findings can not only help to find better strategies for peripheral nerve repair, but also to identify the neuropathic effects of various medications and their mechanisms of action.
Collapse
Affiliation(s)
- Samira Bolandghamat
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | | |
Collapse
|
5
|
Liu X, Cui X, Guan G, Dong Y, Zhang Z. microRNA-192-5p is involved in nerve repair in rats with peripheral nerve injury by regulating XIAP. Cell Cycle 2020; 19:326-338. [PMID: 31944167 PMCID: PMC7028159 DOI: 10.1080/15384101.2019.1710916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/20/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Objective: MicroRNAs (miRNAs) have been demonstrated to engage in the nerve injury, while the effect of microRNA-192-5p (miR-192-5p) on the nerve repair has not yet been well understood. This study is performed to investigate how miR-192-5p affects nerve repair in rats with peripheral nerve injury by regulating X-linked inhibitor of apoptosis protein (XIAP).Methods: The rat model of left sciatic nerve injury was established, and the expression of miR-192-5p was then detected. A series of experiments were conducted to investigate the role of miR-192-5p on nerve repair in rats with peripheral nerve injury. The expression of apoptosis-related proteins (Caspase-3, Bax and Bcl-2) and nerve repair factors (NGF, BDNF, and GAP-43) was measured. Bioinformatics analysis and dual-luciferase reporter gene assay confirmed the targeting relationship between miR-192-5p and XIAP.Results: MiR-192-5p inhibition promoted the recovery of sensory function and the recovery and regeneration in rats with sciatic nerve injury. MiR-192-5p inhibition promoted the recovery of muscle atrophy caused by nerve injury. MiR-192-5p inhibition inhibited neuronal apoptosis by affecting the expression of apoptosis-related proteins and promoted the recovery of nerve function by elevating the expression of nerve repair factors induced by peripheral nerve injury. Bioinformatics analysis and dual-luciferase reporter gene assay confirmed that XIAP was a target gene of miR-192-5p.Conclusion: This study demonstrates that miR-192-5p inhibition can up-regulate the expression of XIAP, decrease the apoptosis of nerve cells, and promote the repair and regeneration of peripheral nerve injury.
Collapse
Affiliation(s)
- Xing Liu
- Department of orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xintao Cui
- Department of orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangwei Guan
- Department of orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Dong
- Department of orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhenyu Zhang
- Department of orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Front Bioeng Biotechnol 2019; 7:337. [PMID: 31824934 PMCID: PMC6882937 DOI: 10.3389/fbioe.2019.00337] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve repair and regeneration remains among the greatest challenges in tissue engineering and regenerative medicine. Even though peripheral nerve injuries (PNIs) are capable of some degree of regeneration, frail recovery is seen even when the best microsurgical technique is applied. PNIs are known to be very incapacitating for the patient, due to the deprivation of motor and sensory abilities. Since there is no optimal solution for tackling this problem up to this day, the evolution in the field is constant, with innovative designs of advanced nerve guidance conduits (NGCs) being reported every day. As a basic concept, a NGC should act as a physical barrier from the external environment, concomitantly acting as physical guidance for the regenerative axons across the gap lesion. NGCs should also be able to retain the naturally released nerve growth factors secreted by the damaged nerve stumps, as well as reducing the invasion of scar tissue-forming fibroblasts to the injury site. Based on the neurobiological knowledge related to the events that succeed after a nerve injury, neuronal subsistence is subjected to the existence of an ideal environment of growth factors, hormones, cytokines, and extracellular matrix (ECM) factors. Therefore, it is known that multifunctional NGCs fabricated through combinatorial approaches are needed to improve the functional and clinical outcomes after PNIs. The present work overviews the current reports dealing with the several features that can be used to improve peripheral nerve regeneration (PNR), ranging from the simple use of hollow NGCs to tissue engineered intraluminal fillers, or to even more advanced strategies, comprising the molecular and gene therapies as well as cell-based therapies.
Collapse
Affiliation(s)
- Cristiana R. Carvalho
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| |
Collapse
|