1
|
Greco R, Francavilla M, Facchetti S, Demartini C, Zanaboni AM, Antonangeli MI, Maffei M, Cattani F, Aramini A, Allegretti M, Tassorelli C, De Filippis L. Intranasal administration of recombinant human BDNF as a potential therapy for some primary headaches. J Headache Pain 2024; 25:184. [PMID: 39455939 PMCID: PMC11515342 DOI: 10.1186/s10194-024-01890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In addition to its critical role in neurogenesis, brain-derived neurotrophic factor (BDNF) modulates pain and depressive behaviors. METHODS In a translational perspective, we tested the anti-migraine activity of highly purified and characterized recombinant human BDNF (rhBDNF) in an animal model of cephalic pain based on the chronic and intermittent NTG administration (five total injections over nine days), used to mimic recurrence of attacks over a given period. To achieve this, we assessed the effects of two doses of rhBDNF (40 and 80 µg/kg) administered intranasally to adult male Sprague-Dawley rats, on trigeminal hyperalgesia (by orofacial formalin test), gene expression (by rt-PCR) of neuropeptides and inflammatory cytokines in specific areas of the brain related to migraine pain. Serum levels of CGRP, PACAP, and VIP (by ELISA) were also evaluated. The effects of rhBDNF were compared with those of sumatriptan (5 mg/kg i.p), administered 1 h before the last NTG administration. RESULTS Both doses of rhBDNF significantly reduced NTG-induced nocifensive behavior in Phase II of the orofacial formalin test. The anti-hyperalgesic effect of intranasal high-dose rhBDNF administration in the NTG-treated animals was associated with a significant modulation of mRNA levels of neuropeptides (CGRP, PACAP, VIP) and cytokines (IL-1beta, IL-10) in the trigeminal ganglion, medulla-pons, and hypothalamic area. Of note, the effects of rhBNDF treatment were comparable to those induced by the administration of sumatriptan. rhBDNF administration at both doses significantly reduced serum levels of PACAP, while the higher dose also significantly reduced serum levels of VIP. CONCLUSIONS The findings suggest that intranasal rhBDNF has the potential to be a safe, non-invasive and effective therapeutic approach for the treatment of primary headache, particularly migraine.
Collapse
Affiliation(s)
- Rosaria Greco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
| | - Miriam Francavilla
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sara Facchetti
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Chiara Demartini
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | | | - Cristina Tassorelli
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
2
|
Giesler LP, Mychasiuk R, Shultz SR, McDonald SJ. BDNF: New Views of an Old Player in Traumatic Brain Injury. Neuroscientist 2024; 30:560-573. [PMID: 37067029 PMCID: PMC11423547 DOI: 10.1177/10738584231164918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Traumatic brain injury is a common health problem affecting millions of people each year. BDNF has been investigated in the context of traumatic brain injury due to its crucial role in maintaining brain homeostasis. Val66Met is a functional single-nucleotide polymorphism that results in a valine-to-methionine amino acid substitution at codon 66 in the BDNF prodomain, which ultimately reduces secretion of BDNF. Here, we review experimental animal models as well as clinical studies investigating the role of the Val66Met single-nucleotide polymorphism in traumatic brain injury outcomes, including cognitive function, motor function, neuropsychiatric symptoms, and nociception. We also review studies investigating the role of BDNF on traumatic brain injury pathophysiology as well as circulating BDNF as a biomarker of traumatic brain injury.
Collapse
Affiliation(s)
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
3
|
An YC, Tsai CL, Liang CS, Lin YK, Lin GY, Tsai CK, Liu Y, Chen SJ, Tsai SH, Hung KS, Yang FC. Identification of Novel Genetic Variants Associated with Insomnia and Migraine Comorbidity. Nat Sci Sleep 2022; 14:1075-1087. [PMID: 35698589 PMCID: PMC9188338 DOI: 10.2147/nss.s365988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Although insomnia and migraine are often comorbid, the genetic association between insomnia and migraine remains unclear. This study aimed to identify susceptibility loci associated with insomnia and migraine comorbidity. Patients and Methods We performed a genome-wide association study (GWAS) involving 1063 clinical outpatients at a tertiary hospital in Taiwan. Migraineurs with and without insomnia were genotyped using the Affymetrix Axiom Genome-Wide TWB 2.0. We performed association analyses for the entire cohort and stratified patients into the following subgroups: episodic migraine (EM), chronic migraine (CM), migraine with aura (MA), and migraine without aura (MoA). Potential correlations between SNPs and clinical indices in migraine patients with insomnia were examined using multivariate regression analysis. Results The SNP rs1178326 in the gene HDAC9 was significantly associated with insomnia. In the EM, CM, MA, and MoA subgroups, we identified 30 additional susceptibility loci. Multivariate regression analysis showed that SNP rs1178326 also correlated with higher migraine frequency and the Migraine Disability Assessment (MIDAS) questionnaire score. Finally, two SNPs that had been previously reported in a major insomnia GWAS were also significant in our migraineurs, showing a concordant effect. Conclusion In this GWAS, we identified several novel loci associated with insomnia in migraineurs in a Han Chinese population in Taiwan. These results provide insights into the possible genetic basis of insomnia and migraine comorbidity.
Collapse
Affiliation(s)
- Yu-Chin An
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yi Liu
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
4
|
Siokas V, Liampas I, Aloizou AM, Papasavva M, Bakirtzis C, Lavdas E, Liakos P, Drakoulis N, Bogdanos DP, Dardiotis E. Deciphering the Role of the rs2651899, rs10166942, and rs11172113 Polymorphisms in Migraine: A Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040491. [PMID: 35454329 PMCID: PMC9031971 DOI: 10.3390/medicina58040491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
Abstract
The genetic basis of migraine is rather complex. The rs2651899 in the PR/SET domain 16 (PRDM16) gene, the rs10166942 near the transient receptor potential cation channel subfamily M member 8 (TRPM8) gene, and the rs11172113 in the LDL receptor-related protein 1 (LRP1) gene, have been associated with migraine in a genome-wide association study (GWAS). However, data from subsequent studies examining the role of these variants and their relationship with migraine remain inconclusive. The aim of the present study was to meta-analyze the published data assessing the role of these polymorphisms in migraine, migraine with aura (MA), and migraine without aura (MO). We performed a search in the PubMed, Scopus, Web of Science, and Public Health Genomics and Precision Health Knowledge Base (v7.7) databases. In total, eight, six, and six studies were included in the quantitative analysis, for the rs2651899, rs10166942, and rs11172113, respectively. Cochran’s Q and I2 tests were used to calculate the heterogeneity. The random effects (RE) model was applied when high heterogeneity was observed; otherwise, the fixed effects (FE) model was applied. The odds ratios (ORs) and the respective 95% confidence intervals (CIs) were calculated to estimate the effect of each variant on migraine. Funnel plots were created to graphically assess publication bias. A significant association was revealed for the CC genotype of the rs2651899, with the overall migraine group (RE model OR: 1.32; 95% CI: 1.02−1.73; p-value = 0.04) and the MA subgroup (FE model OR: 1.40; 95% CI: 1.12−1.74; p-value = 0.003). The rs10166942 CT genotype was associated with increased migraine risk (FE model OR: 1.36; 95% CI: 1.18−1.57; p-value < 0.0001) and increased MO risk (FE model OR: 1.41; 95% CI: 1.17−1.69; p-value = 0.0003). No association was detected for the rs11172113. The rs2651899 and the rs10166942 have an effect on migraine. Larger studies are needed to dissect the role of these variants in migraine.
Collapse
Affiliation(s)
- Vasileios Siokas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece; (V.S.); (I.L.); (A.-M.A.)
| | - Ioannis Liampas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece; (V.S.); (I.L.); (A.-M.A.)
| | - Athina-Maria Aloizou
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece; (V.S.); (I.L.); (A.-M.A.)
| | - Maria Papasavva
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (M.P.); (N.D.)
| | - Christos Bakirtzis
- B’ Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Eleftherios Lavdas
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece;
- Department of Medical Imaging, Animus Kyanoys Larisas Hospital, 41222 Larissa, Greece
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece;
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (M.P.); (N.D.)
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500 Larissa, Greece;
| | - Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece; (V.S.); (I.L.); (A.-M.A.)
- Correspondence: ; Tel.: +30-241-350-1137
| |
Collapse
|
5
|
Frattale I, Ruscitto C, Papetti L, Ursitti F, Sforza G, Moavero R, Ferilli MAN, Tarantino S, Balestri M, Vigevano F, Mazzone L, Valeriani M. Migraine and Its Equivalents: What Do They Share? A Narrative Review on Common Pathophysiological Patterns. Life (Basel) 2021; 11:1392. [PMID: 34947923 PMCID: PMC8705894 DOI: 10.3390/life11121392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 01/02/2023] Open
Abstract
Migraine is the first in order of frequency of the neurological disorders, affecting both adult and paediatric populations. It is also the first cause of primary headaches in children. Migraine equivalents are periodic disorders that can be associated with migraine or considered as prognostic features of a future migraine manifestation. Despite the mechanisms underlying migraine and its equivalents are not entirely clear, several elements support the hypothesis of common pathophysiological patterns shared by these conditions. The aim of this review is thus to analyze the literature in order to highlight which currently known mechanisms may be common between migraine and its equivalents.
Collapse
Affiliation(s)
- Ilaria Frattale
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Hospital of Rome, 00165 Rome, Italy; (I.F.); (C.R.); (R.M.); (L.M.)
| | - Claudia Ruscitto
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Hospital of Rome, 00165 Rome, Italy; (I.F.); (C.R.); (R.M.); (L.M.)
| | - Laura Papetti
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (F.U.); (G.S.); (M.A.N.F.); (S.T.); (M.B.); (F.V.)
| | - Fabiana Ursitti
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (F.U.); (G.S.); (M.A.N.F.); (S.T.); (M.B.); (F.V.)
| | - Giorgia Sforza
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (F.U.); (G.S.); (M.A.N.F.); (S.T.); (M.B.); (F.V.)
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Hospital of Rome, 00165 Rome, Italy; (I.F.); (C.R.); (R.M.); (L.M.)
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (F.U.); (G.S.); (M.A.N.F.); (S.T.); (M.B.); (F.V.)
| | - Michela Ada Noris Ferilli
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (F.U.); (G.S.); (M.A.N.F.); (S.T.); (M.B.); (F.V.)
| | - Samuela Tarantino
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (F.U.); (G.S.); (M.A.N.F.); (S.T.); (M.B.); (F.V.)
| | - Martina Balestri
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (F.U.); (G.S.); (M.A.N.F.); (S.T.); (M.B.); (F.V.)
| | - Federico Vigevano
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (F.U.); (G.S.); (M.A.N.F.); (S.T.); (M.B.); (F.V.)
| | - Luigi Mazzone
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Hospital of Rome, 00165 Rome, Italy; (I.F.); (C.R.); (R.M.); (L.M.)
| | - Massimiliano Valeriani
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (F.U.); (G.S.); (M.A.N.F.); (S.T.); (M.B.); (F.V.)
- Center for Sensory-Motor Interaction, Aalborg University, 9220 Aalborg Øst, Denmark
| |
Collapse
|
6
|
Tsai CK, Liang CS, Lin GY, Tsai CL, Lee JT, Sung YF, Lin YK, Hung KS, Chen WL, Yang FC. Identifying genetic variants for age of migraine onset in a Han Chinese population in Taiwan. J Headache Pain 2021; 22:89. [PMID: 34380431 PMCID: PMC8356430 DOI: 10.1186/s10194-021-01301-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background Considering the involvement of genetics in migraine pathogenesis in diverse ethnic populations, genome-wide association studies (GWAS) are being conducted to identify migraine-susceptibility genes. However, limited surveys have focused on the onset age of migraine (AoM) in Asians. Therefore, in this study, we aimed to identify the susceptibility loci of migraine considering the AoM in an Asian population. Methods We conducted a GWAS in 715 patients with migraine of Han Chinese ethnicity, residing in Taiwan, to identify the susceptibility genes associated with AoM. Based on our standard demographic questionnaire, the population was grouped into different subsets. Single-nucleotide polymorphism (SNP) associations were examined using PLINK in different AoM onset groups. Results We discovered eight novel susceptibility loci correlated with AoM that reached the GWAS significance level in the Han Chinese population. First, rs146094041 in ESRRG was associated with AoM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\le$$\end{document}≤ 12 years. The other SNPs including rs77630941 in CUX1, rs146778855 in CDH18, rs117608715 in NOL3, rs150592309 in PRAP1, and rs181024055 in NRAP were associated with the later AoM. Conclusions To our knowledge, this is the first GWAS to investigate the AoM in an Asian Han Chinese population. Our newly discovered susceptibility genes may have prospective associations with migraine pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01301-y.
Collapse
Affiliation(s)
- Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.,Department of Neurology, Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Jiunn-Tay Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Yueh-Feng Sung
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Geriatric Medicine, Department of Family and Community Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.
| |
Collapse
|