1
|
Arar W, Ali RB, El May MV, Khatyr A, Jourdain I, Knorr M, Brieger L, Scheel R, Strohmann C, Chaker A, Akacha AB. Synthesis, crystal structures and biological activities of halogeno-(O-alkylphenylcarbamothioate)bis(triarylphosphine)copper(I) complexes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Xin HL, Rao X, Ishitani H, Kobayashi S. Sequential Continuous-Flow Synthesis of 3-Aryl Benzofuranones. Chem Asian J 2021; 16:1906-1910. [PMID: 34137489 DOI: 10.1002/asia.202100461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Indexed: 01/01/2023]
Abstract
A sequential continuous-flow system to produce 3-aryl benzofuranones was developed. Starting from 2,4-di-tert-butylphenol and glyoxylic acid monohydrate, both the initial cyclocondensation and the subsequent Friedel-Crafts alkylation were catalyzed by the same heterogeneous catalyst, Amberlyst-15H. The catalyst has a promising life-time for these two steps, and it was able to be recovered and reused for several runs without deactivation. By using the established flow system, 5,7-di-tert-butyl-3-(3,4-dimethylphenyl)-3H-benzofuran-2-one (Irganox HP-136), which is a commercial antioxidant, was prepared in 88% two-step yield. Reactions with various aromatic compounds proceeded well under flow conditions to afford 3-aryl benzo-furanone derivatives in high yields with good functional group compatibility.
Collapse
Affiliation(s)
- Hai-Long Xin
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, 113-0033, Bunkyo-ku, Tokyo, Japan
| | - Xiaofeng Rao
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, 113-0033, Bunkyo-ku, Tokyo, Japan
| | - Haruro Ishitani
- Green & Sustainable Chemistry Social Cooperation Laboratory, Graduate School of Science, The University of Tokyo, Hongo, 113-0033, Bunkyo-ku, Tokyo, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, 113-0033, Bunkyo-ku, Tokyo, Japan.,Green & Sustainable Chemistry Social Cooperation Laboratory, Graduate School of Science, The University of Tokyo, Hongo, 113-0033, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Ielciu I, Sevastre B, Olah NK, Turdean A, Chișe E, Marica R, Oniga I, Uifălean A, Sevastre-Berghian AC, Niculae M, Benedec D, Hanganu D. Evaluation of Hepatoprotective Activity and Oxidative Stress Reduction of Rosmarinus officinalis L. Shoots Tincture in Rats with Experimentally Induced Hepatotoxicity. Molecules 2021; 26:1737. [PMID: 33804618 PMCID: PMC8003693 DOI: 10.3390/molecules26061737] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Rosmarinus officinalis L. is a widely known species for its medicinal uses, that is also used as raw material for the food and cosmetic industry. The aim of the present study was to offer a novel perspective on the medicinal product originating from this species and to test its hepatoprotective activity. The tested sample consisted in a tincture obtained from the fresh young shoots. Compounds that are evaluated for this activity are polyphenols and terpenoids, that are identified and quantified by HPLC-UV-MS and GC-MS. Antioxidant activity was assessed in vitro, using the DPPH, FRAP and SO assays. Hepatoprotective activity was tested in rats with experimentally-induced hepatotoxicity. In the chemical composition of the tincture, phenolic diterpenes (carnosic acid, carnosol, rosmanol, rosmadial) and rosmarinic acid were found to be the majority compounds, alongside with 1,8-cineole, camphene, linalool, borneol and terpineol among monoterpenes. In vitro, the tested tincture proved significant antioxidant capacity. Results of the in vivo experiment showed that hepatoprotective activity is based on an antioxidant mechanism. In this way, the present study offers a novel perspective on the medicinal uses of the species, proving significant amounts of polyphenols and terpenes in the composition of the fresh young shoots tincture, that has proved hepatoprotective activity through an antioxidant mechanism.
Collapse
Affiliation(s)
- Irina Ielciu
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Bogdan Sevastre
- Department of Clinic and Paraclinic Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Neli-Kinga Olah
- PlantExtrakt, 407059 Cluj-Napoca, Romania; (N.-K.O.); (A.T.)
- Department of Pharmaceutical Industry, Faculty of Pharmacy, Vasile Goldiş Western University of Arad, 310414 Arad, Romania
| | - Andreea Turdean
- PlantExtrakt, 407059 Cluj-Napoca, Romania; (N.-K.O.); (A.T.)
| | - Elisabeta Chișe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Vasile Goldiş Western University of Arad, 310414 Arad, Romania;
| | - Raluca Marica
- Department of Clinic and Paraclinic Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Ilioara Oniga
- Department of Pharmacognosy, Iuliu Haţieganu University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (I.O.); (D.H.)
| | - Alina Uifălean
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Alexandra C. Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Mihaela Niculae
- Department of Clinical Sciences, Division and Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania;
| | - Daniela Benedec
- Department of Pharmacognosy, Iuliu Haţieganu University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (I.O.); (D.H.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Iuliu Haţieganu University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (I.O.); (D.H.)
| |
Collapse
|
4
|
Hu S, Lu Z, Liu M, Xu H, Wu J, Chen F. TfOH-Catalyzed Cascade C-H Activation/Lactonization of Phenols with α-Aryl-α-diazoesters: Rapid Access to α-Aryl Benzofuranones. J Org Chem 2020; 85:14916-14925. [PMID: 32957783 DOI: 10.1021/acs.joc.0c01583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aryl benzofuranones are privileged structural units present in natural products and pharmaceutically relevant compounds with high bioactivity and therapeutic value; synthetic access to these scaffolds remains an area of intensive interest. A new and efficient TfOH-catalyzed cascade ortho C-H activation/lactonization of phenols with α-aryl-α-diazoacetates is reported. This metal-free protocol provides an operationally simple and rapid method for the one-pot assembly of diverse α-aryl benzofuranones in high yields with broad substrate scope, a readily starting material, good chemo-regioselectivity, and excellent functional group compatibility.
Collapse
Affiliation(s)
- Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Zuolin Lu
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou 310014, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Hanlin Xu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Jiale Wu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China.,Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou 310014, China
| |
Collapse
|
5
|
Bahri S, Ali RB, Abdennabi R, Nahdi A, Mlika M, Jameleddine S. Industrial Elimination of Essential Oils from Rosmarinus Officinalis: In Support of the Synergic Antifibrotic Effect of Rosmarinic and Carnosic Acids in Bleomycin Model of Lung Fibrosis. Nutr Cancer 2020; 73:2376-2387. [PMID: 33059466 DOI: 10.1080/01635581.2020.1826991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by collagen deposition as a consequence of excessive lung fibroblasts and myofibroblasts proliferation. We aimed to investigate for the first time the effect of rosemary leaf extract rich with carnosic acid (CA) or rosmarinic acid (RA), after industrial elimination of essential oils, against bleomycin (BLM)-induced lung fibrosis in rats. Male Wistar rats were given a single dose of BLM (4 mg/kg, intratracheal), while CA rich extract, RA rich extract or the combination RA/CA rich extracts (10, 75 and 150 mg/kg, intraperitoneal) were administered 3 day later and continued for 4 weeks. We reveled by HPLC an important similar amount of phenolic compounds such as pyrogallol, vanillic, gallic and ellagic acids in both rosemary extracts. BLM induced lung fibrotic foci and disturbance in superoxide dismutase, catalase and malondialdehyde levels. At 10 mg/kg, both rosemary extracts administrated alone or in combination alleviated synergistically lung fibrosis and ameliorated oxidative changes induced by BLM. In conclusion, industrial elimination of essential oils from rosemary allowed us to obtain two extracts with potent antifibrotic activities due to the large amount of RA and CA that appear much higher and effective than wild rosemary extract.
Collapse
Affiliation(s)
- Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia.,Laboratory of Quality Control, Herbes De Tunisie, Company AYACHI-Group, Siliana, Tunisia
| | - Ridha Ben Ali
- Laboratory of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Raed Abdennabi
- Laboratory of Plant Biotechnology, Faculty of Science, University of Sfax, Sfax, Tunisia
| | - Afef Nahdi
- Research Unit n° 17/ES/13, Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Mona Mlika
- Laboratory of Anatomy and Pathology, Abderhaman Mami Hospital, Ariana, Tunisia
| | - Saloua Jameleddine
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| |
Collapse
|