1
|
Hassani S, Malekinejad H, Khadem-Ansari MH, Abbasi A, Kheradmand F. Dietary silymarin supplementation enhances chemotherapy efficacy of capecitabine and irinotecan and mitigates hepatotoxicity in a mouse model of colon cancer. Res Pharm Sci 2025; 20:77-94. [PMID: 40190825 PMCID: PMC11972028 DOI: 10.4103/rps.rps_204_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 04/09/2025] Open
Abstract
Background and purpose The flavonoid silymarin (SMN) has shown promise due to its antioxidant, anti-inflammatory, and anticancer properties. SMN has been widely used in preclinical and clinical studies to treat various types of cancer, alone and with chemotherapy agents. Recent research suggests that SMN may increase conventional chemotherapy efficacy and reduce adverse effects. Herein, we investigated the therapeutic efficacy of SMN and its combination with capecitabine (CAP) and irinotecan (IRI) in a mouse model of colon cancer. Experimental approach Following 1,2 dimethylhydrazine-induced colon cancer, a modified diet supplemented with SMN (2500 ppm) and mono- and combined therapy of CAP and IRI was used. Serum samples were analyzed for lipid profile, liver function, and inflammatory cytokines. Oxidative stress and inflammation markers, including malondialdehyde (MDA), nitric oxide (NO), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured in colonic, hepatic, and circulatory samples. Colonic BAX and Bcl-2 levels were examined via western blotting and histopathological analysis of colon sections was conducted. Findings/Results SMN alone and combined with chemotherapeutic agents significantly mitigated the elevated inflammatory cytokines liver function enzyme levels, and hyperlipidemia. Furthermore, SMN supplementation with chemotherapy agents enhanced antioxidant activity and reduced lipid peroxidation and inflammatory markers. Significant upregulation of BAX and downregulation of Bcl-2 were observed. In addition, treatment regimens ameliorated carcinogen-induced polyp multiplicity, adenoma formation, dysplastic changes, and lymphocytic aggregation. Conclusion and implications Our results demonstrated that the potential anticancer properties of SMN could enhance chemotherapy efficacy and reduce carcinogen- and chemotherapy-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sepideh Hassani
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Ata Abbasi
- Department of Pathology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Ahmed SS, Baba MZ, Wahedi U, Koppula J, Reddy MV, Selvaraj D, Venkatachalam S, Selvaraj J, Sankar V, Natarajan J. Oral delivery of solid lipid nanoparticles surface decorated with hyaluronic acid and bovine serum albumin: A novel approach to treat colon cancer through active targeting. Int J Biol Macromol 2024; 279:135487. [PMID: 39349339 DOI: 10.1016/j.ijbiomac.2024.135487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/17/2024] [Accepted: 09/07/2024] [Indexed: 10/02/2024]
Abstract
The present study aims to prepare and evaluate solid lipid nanoparticles (SLNs) loaded with irinotecan (IRN) drug and daidzein (DZN) isoflavonoid and surface coated with ligand materials such as hyaluronic acid (HA) and bovine serum albumin (BSA) with additional coating of chitosan for active targeting to receptors present on colon surface epithelium for oral targeted delivery. The optimized batch was evaluated for particle size, zeta potential exhibiting nanometric size with good entrapment efficiency. Nanoparticles were found to be spherical. FTIR and DSC revealed that all the excipients and formulation were compatabile to each other and showed better encapsulation exhibiting amorphous and crystallinity forms. In vitro drug release of SLNs confirmed that initially a burst release, followed by sustained release pattern was exhibited. Cell lines studied performed on HT-29 cells showed demonstrated that conjugated SLNs inhibited cytotoxicity at 75 μg/ml, indicating that cells were taken up through a receptor-mediated endocytosis process. Cell cycle analysis showed that cell arrest was done at 67.8 % (G0/G1 phase) and inhibited apoptosis by 56 %. Further during In vivo studies, RT-PCR study revealed downregulation of Carcinoembryonic antigen (CEA), a non-specific serum biomarker overexpressed in tumor cells and upregulation of pro-inflammatory cytokine TNF-α. Histopathological study revealed that conjugated (HA-BSA) coated with chitosan SLNs restored normal mucosa and colon architecture, depicting all mucosal layers. Hence, these conjugated SLNs may serve as a novel combination for the treatment of colon cancer.
Collapse
Affiliation(s)
- Syed Suhaib Ahmed
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Mohd Zubair Baba
- Department of pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Umair Wahedi
- Department of pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Jayanthi Koppula
- Department of pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Murthannagari Vivek Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Jubie Selvaraj
- Department of pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Veintramuthu Sankar
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
3
|
Guo X, Wang H, Zheng W, Guo C, Song Q. Chemoprotective Effect of Ginsenoside Against the 1,2-Dimethylhydrazine (DMH) Induced Colorectal Cancer in Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1004.1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Silva-Reis R, Castro-Ribeiro C, Gonçalves M, Ferreira T, Pires MJ, Iglesias-Aguirre CE, Cortés-Martín A, Selma MV, Espín JC, Nascimento-Gonçalves E, Moreira-Pais A, Neuparth MJ, Peixoto F, Rosa E, Gama A, Ferreira R, Oliveira PA, Faustino-Rocha AI. An Integrative Approach to Characterize the Early Phases of Dimethylhydrazine-Induced Colorectal Carcinogenesis in the Rat. Biomedicines 2022; 10:biomedicines10020409. [PMID: 35203618 PMCID: PMC8962270 DOI: 10.3390/biomedicines10020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to characterize an animal model of colorectal cancer (CRC) in the early stages of disease development. Twenty-nine male Wistar rats were divided into two control groups (CTRL1 and CTRL2), receiving EDTA–saline injections and two induced groups (CRC1 and CRC2), receiving 1,2-dimethylhydrazine (DMH) injections for seven consecutive weeks. CRC1 and CTRL1 were euthanized at the 11th week, while CRC2 and CTRL2 were euthanized at the 17th week. DMH treatment decreased microhematocrit values and IL-6, ghrelin, and myostatin serum levels. Histopathological analysis of intestinal sections showed that DMH-treated rats were characterized by moderate to severe epithelial dysplasia. An adenoma was observed in one animal (CRC2 group), and the presence of inflammatory infiltrate at the intestinal level was primarily observed in DMH-treated animals. DMH also induced Ki-67 immunoexpression. The gut microbiota analysis showed a higher abundance of Firmicutes, Clostridia, Clostridiales, Peptostreptococcaceae, Blautia, Romboutsia, and Clostridium sensu stricto in CRC than CTRL rats, whereas Prevotellaceae, Prevotella, Akkermansia, and Lactobacillus levels were more prevalent in CTRL animals. Our results suggest that this model could be helpful to investigate chemoprevention in the early stages of CRC.
Collapse
Affiliation(s)
- Rita Silva-Reis
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
| | - Catarina Castro-Ribeiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
| | - Mariana Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
| | - Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
| | - Maria João Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Carlos E. Iglesias-Aguirre
- Laboratory Food & Health, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (C.E.I.-A.); (A.C.-M.); (M.V.S.); (J.C.E.)
| | - Adrián Cortés-Martín
- Laboratory Food & Health, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (C.E.I.-A.); (A.C.-M.); (M.V.S.); (J.C.E.)
| | - María V. Selma
- Laboratory Food & Health, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (C.E.I.-A.); (A.C.-M.); (M.V.S.); (J.C.E.)
| | - Juan Carlos Espín
- Laboratory Food & Health, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (C.E.I.-A.); (A.C.-M.); (M.V.S.); (J.C.E.)
| | - Elisabete Nascimento-Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
| | - Alexandra Moreira-Pais
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.-P.); (R.F.)
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal;
| | - Maria J. Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal;
| | - Francisco Peixoto
- Chemistry Research Center, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
| | - Adelina Gama
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science—AL4AnimalS, Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.-P.); (R.F.)
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Center, 7004-516 Évora, Portugal
- Correspondence:
| |
Collapse
|
5
|
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhao H, Yang H, Liu M, Ren S, Xu H. Traditional Chinese Medicine and Colorectal Cancer: Implications for Drug Discovery. Front Pharmacol 2021; 12:685002. [PMID: 34276374 PMCID: PMC8281679 DOI: 10.3389/fphar.2021.685002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
As an important part of complementary and alternative medicine, traditional Chinese medicine (TCM) has been applied to treat a host of diseases for centuries. Over the years, with the incidence rate of human colorectal cancer (CRC) increasing continuously and the advantage of TCM gradually becoming more prominent, the importance of TCM in both domestic and international fields is also growing with each passing day. However, the unknowability of active ingredients, effective substances, and the underlying mechanisms of TCM against this malignant tumor greatly restricts the translation degree of clinical products and the pace of precision medicine. In this review, based on the characteristics of TCM and the oral administration of most ingredients, we herein provide beneficial information for the clinical utilization of TCM in the prevention and treatment of CRC and retrospect the current preclinical studies on the related active ingredients, as well as put forward the research mode for the discovery of active ingredients and effective substances in TCM, to provide novel insights into the research and development of innovative agents from this conventional medicine for CRC treatment and assist the realization of precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Nascimento-Gonçalves E, Mendes BA, Silva-Reis R, Faustino-Rocha AI, Gama A, Oliveira PA. Animal Models of Colorectal Cancer: From Spontaneous to Genetically Engineered Models and Their Applications. Vet Sci 2021; 8:vetsci8040059. [PMID: 33916402 PMCID: PMC8067250 DOI: 10.3390/vetsci8040059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer is one of the most common gastrointestinal malignancies in humans, affecting approximately 1.8 million people worldwide. This disease has a major social impact and high treatment costs. Animal models allow us to understand and follow the colon cancer progression; thus, in vivo studies are essential to improve and discover new ways of prevention and treatment. Dietary natural products have been under investigation for better and natural prevention, envisioning to show their potential. This manuscript intends to provide the readers a review of rodent colorectal cancer models available in the literature, highlighting their advantages and disadvantages, as well as their potential in the evaluation of several drugs and natural compounds’ effects on colorectal cancer.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (E.N.-G.); (B.A.L.M.); (R.S.-R.)
| | - Bruno A.L. Mendes
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (E.N.-G.); (B.A.L.M.); (R.S.-R.)
| | - Rita Silva-Reis
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (E.N.-G.); (B.A.L.M.); (R.S.-R.)
| | - Ana I. Faustino-Rocha
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (E.N.-G.); (B.A.L.M.); (R.S.-R.)
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7000-812 Évora, Portugal
- Correspondence: (A.I.F.-R.); (P.A.O.)
| | - Adelina Gama
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (E.N.-G.); (B.A.L.M.); (R.S.-R.)
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence: (A.I.F.-R.); (P.A.O.)
| |
Collapse
|