1
|
Ilhan S, Çamli Pulat Ç, Oguz F, Bektaş H, Menteşe E, Atmaca H. Design and synthesis of benzimidazole derivatives as apoptosis-inducing agents by targeting Bcl-2 protein. Mol Divers 2023; 27:1703-1712. [PMID: 36065037 DOI: 10.1007/s11030-022-10524-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Bcl-2, an anti-apoptotic protein, is a well-known and appealing cancer therapy target. Novel series of benzimidazole derivatives were synthesized and tested for their activity as Bcl-2 inhibitors on T98G glioblastoma, PC3 prostate, MCF-7 breast, and H69AR lung cancer cells. MTT assay was used to evaluate the cytotoxic effect. PI Annexin V Apoptosis Detection Kit was used to detect apoptosis. Expression levels of the Bcl-2 protein were examined by the Western blot analysis and qRT-PCR. All synthesized benzimidazole derivatives exhibited a cytotoxic effect on cancer cells with IC50 values in the range of 25.2-88.2 µg/mL. Among all derivatives, compounds C1 and D1 demonstrated a higher cytotoxic effect on cancer cells with IC50 values < 50 µg/mL, while a lower cytotoxic effect against human embryonic kidney cells with IC50 values of > 100 µg/mL. C1 and D1 caused a significant increase in the percentage of apoptotic cells in all types of cancer cell cells and both Bcl-2 mRNA and protein levels were significantly reduced. These results suggest that the novel benzimidazole derivatives may be candidates for apoptosis-inducing agents in cancer treatment by targeting anti-Bcl-2 proteins in cancer cells.
Collapse
Affiliation(s)
- Suleyman Ilhan
- Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140, Manisa, Turkey
| | - Çisil Çamli Pulat
- Applied Science Research Center, Manisa Celal Bayar University, Manisa, Turkey
| | - Ferdi Oguz
- Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140, Manisa, Turkey
| | - Hakan Bektaş
- Department of Chemistry, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Emre Menteşe
- Department of Chemistry, Faculty of Science and Art, Recep Tayyip Erdogan University, Rize, Turkey
| | - Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140, Manisa, Turkey.
| |
Collapse
|
2
|
de Sousa DP, Damasceno ROS, Amorati R, Elshabrawy HA, de Castro RD, Bezerra DP, Nunes VRV, Gomes RC, Lima TC. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023; 13:1144. [PMID: 37509180 PMCID: PMC10377445 DOI: 10.3390/biom13071144] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, we provide an overview of the current understanding of the main mechanisms of pharmacological action of essential oils and their components in various biological systems. A brief introduction on essential oil chemistry is presented to better understand the relationship of chemical aspects with the bioactivity of these products. Next, the antioxidant, anti-inflammatory, antitumor, and antimicrobial activities are discussed. The mechanisms of action against various types of viruses are also addressed. The data show that the multiplicity of pharmacological properties of essential oils occurs due to the chemical diversity in their composition and their ability to interfere with biological processes at cellular and multicellular levels via interaction with various biological targets. Therefore, these natural products can be a promising source for the development of new drugs.
Collapse
Affiliation(s)
- Damião P de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Renan Oliveira S Damasceno
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via Gobetti 83, 40129 Bologna, Italy
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Ricardo D de Castro
- Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | - Daniel P Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Vitória Regina V Nunes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Rebeca C Gomes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Tamires C Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Brazil
| |
Collapse
|
3
|
Razali S, Firus Khan AY, Khatib A, Ahmed QU, Abdul Wahab R, Zakaria ZA. An In Vitro Anticancer Activity Evaluation of Neolamarckia cadamba (Roxb.) Bosser Leaves' Extract and its Metabolite Profile. Front Pharmacol 2021; 12:741683. [PMID: 34721030 PMCID: PMC8548635 DOI: 10.3389/fphar.2021.741683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 12/09/2022] Open
Abstract
The leaves of Neolamarckia cadamba (NC) (Roxb.) Bosser (family: Rubiaceae) are traditionally used to treat breast cancer in Malaysia; however, this traditional claim is yet to be scientifically verified. Hence, this study was aimed to evaluate the anticancer effect of NC leaves' ethanol extract against breast cancer cell line (MCF-7 cells) using an in vitro cell viability, cytotoxicity, and gene expression assays followed by the gas chromatography analysis to further confirm active principles. Results revealed 0.2 mg/ml as the half maximal inhibitory concentration (IC50) against MCF-7. The extract exerted anticancer effect against MCF-7 cells in a dose- and time-dependent manner. The cell cycle assay showed that the extract arrested MCF-7 cells in the G0/G1 phase, and apoptosis was observed after 72 h by the Annexin-V assay. The gene expression assay revealed that the cell cycle arrest was associated with the downregulation of CDK2 and subsequent upregulation of p21 and cyclin E. The extract induced apoptosis via the mediation of the mitochondrial cell death pathways. A chromatography analysis revealed the contribution of D-pinitol and myo-inositol as the two major bioactive compounds to the activity observed. Overall, the study demonstrated that NC leaves' ethanol extract exerts anticancer effect against MCF-7 human breast cancer cells through the induction of apoptosis and cell cycle arrest, thereby justifying its traditional use for the treatment of breast cancer in Malaysia.
Collapse
Affiliation(s)
- Shakirah Razali
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Al'aina Yuhainis Firus Khan
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia.,Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Ridhwan Abdul Wahab
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.,Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
4
|
Barati N, Tafrihi M, A Najafi SM. Membrane Localization of β-Catenin in Prostate Cancer PC3 Cells Treated with Teucrium persicum Boiss. Extract. Nutr Cancer 2021; 74:1819-1828. [PMID: 34343037 DOI: 10.1080/01635581.2021.1961829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Teucrium persicum Boiss. is an Iranian endemic plant which belongs to the Lamiaceae family and has been used to relieve pains in traditional Iranian medicine. We have previously found that treatment of prostate cancer PC3 cells with Teucrium persicum extract leads to the formation of small populations of epithelial cells. β-Catenin is a component of cell adherens junctions in epithelial cells and therefore, in this study, we have investigated the effect of Teucrium persicum extract on expression, cellular localization, and transcriptional activity of β-Catenin protein in PC-3 cells. Indirect immunofluorescence microscopy results showed that the cells treated with T. persicum extract had higher levels of β-Catenin protein at the cell membrane. Western blotting experiments produced consistent results. Gene expression studies by using a few β-Catenin-target genes including c-MYC, CYCLIN D1, and a reporter Luciferase gene under the control of several β-Catenin/TCF binding elements showed that treatment of PC3 cells with the methanolic extract of T. persicum decreases the transcriptional activities of β-Catenin. The results of this study provide further support for the anticancer properties of T. persicum. Definitely, more detailed molecular investigations are needed to find the mechanism(s) behind these effects. Highlightsβ-Catenin protein is a main component of Wnt signaling pathway and adherens junction.Activation of Wnt signaling pathway affects translocation of β-Catenin.Teucrium persicum extract induces β-Catenin localization at cell membrane.Teucrium persicum affects the transcriptional activity of β-Catenin.It stabilizes E-cadherin/β-Catenin protein complex and adherens junction.
Collapse
Affiliation(s)
- Narges Barati
- Department of Cell and Molecular Biology, School of Biology, University of Tehran, Tehran, Iran
| | - Majid Tafrihi
- Department of Molecular and Cell Biology, Faculty of Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - S Mahmoud A Najafi
- Department of Cell and Molecular Biology, School of Biology, University of Tehran, Tehran, Iran
| |
Collapse
|