1
|
Dadson P, Ngum P, Juarez-Orozco LE, Ntodie M, Loba P. The Relevance and Potential Role of Orbital Fat in Inflammatory Orbital Diseases: Implications for Diagnosis and Treatment. Ophthalmol Ther 2025; 14:247-281. [PMID: 39680323 PMCID: PMC11754589 DOI: 10.1007/s40123-024-01079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
The orbit is an important structure within the skull that houses the eye, optic nerve, and extraocular muscles. It also contains adipose/fat tissue, which provides a protective cushion for these components. Inflammatory orbital disease can affect any or all components of the orbit, often arising from various underlying pathologic conditions, including autoimmune, infectious, and vascular diseases. Typical signs and symptoms of orbital inflammation include swelling, redness, pain, discomfort, and potential loss of function. The role of orbital fat in the pathogenesis of inflammatory orbital diseases has not been fully explored. This review aims to provide a comprehensive description of orbital fat, its relevance and the potential role in inflammatory diseases of the orbit, and the use of radiologic imaging studies for evaluating this fat depot in cases of as inflammatory orbital diseases. Additionally, this review discusses the various procedures available for the treatment and management of these conditions. A range of interventions, including pharmacotherapy and surgical procedures, will be evaluated as promising therapeutic options. This review also explores the characteristics and potential applications of orbital fat-derived stem cells, with an emphasis on their regenerative abilities and anti-inflammatory effects. Understanding the role of orbital fat and its contribution to inflammatory orbital diseases is essential for optimizing diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Prince Dadson
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
| | - Peter Ngum
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Luis Eduardo Juarez-Orozco
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Michael Ntodie
- Centre for Optometry and Vision Science, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Piotr Loba
- Department of Binocular Vision Pathophysiology and Strabismus, Medical University of Lodz, University Barlicki Hospital No.1, Kopcinskiego Street 22, 90-153, Lodz, Poland.
| |
Collapse
|
2
|
Norman O, Vornanen T, Franssila H, Liinamaa J, Karvonen E, Kotkavaara T, Pohjanen VM, Ylikärppä R, Pihlajaniemi T, Hurskainen M, Heikkinen A. Expression of Collagen XIII in Tissues of the Thyroid and Orbit With Relevance to Thyroid-Associated Ophthalmopathy. Invest Ophthalmol Vis Sci 2024; 65:6. [PMID: 38564194 PMCID: PMC10996972 DOI: 10.1167/iovs.65.4.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose Antibodies against collagen XIII have previously been identified in patients with active thyroid-associated ophthalmopathy (TAO). Although collagen XIII expression has been described in extraocular muscles and orbital fat, its detailed localization in extraocular and thyroid tissues and the connection to autoimmunity for collagen XIII remain unclear. Our objective was to map the potential targets for these antibodies in the tissues of the orbit and thyroid. Methods We evaluated the expression of collagen XIII in human patient and mouse orbital and thyroid tissues with immunostainings and RT-qPCR using Col13a1-/- mice as negative controls. COL13A1 expression in Graves' disease and goiter thyroid samples was compared with TGF-β1 and TNF, and these were also studied in human thyroid epithelial cells and fibroblasts. Results Collagen XIII expression was found in the neuromuscular and myotendinous junctions of extraocular muscles, blood vessels of orbital connective tissue and fat and the thyroid, and in the thyroid epithelium. Thyroid expression was also seen in germinal centers in Graves' disease and in neoplastic epithelium. The expression of COL13A1 in goiter samples correlated with levels of TGF-B1. Upregulation of COL13A1 was reproduced in thyroid epithelial cells treated with TGF-β1. Conclusions We mapped the expression of collagen XIII to various locations in the orbit, demonstrated its expression in the pathologies of the Graves' disease thyroid and confirmed the relationship between collagen XIII and TGF-β1. Altogether, these data add to our understanding of the targets of anti-collagen XIII autoantibodies in TAO.
Collapse
Affiliation(s)
- Oula Norman
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Tuuli Vornanen
- Department of General Surgery, Oulu University Hospital, and Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Hanna Franssila
- Department of General Surgery, Oulu University Hospital, and Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Johanna Liinamaa
- Department of Ophthalmology, Oulu University Hospital, and Research Unit of Clinical Medicine, Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Elina Karvonen
- Department of Ophthalmology, Oulu University Hospital, and Research Unit of Clinical Medicine, Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Tommi Kotkavaara
- Department of Ophthalmology, Oulu University Hospital, and Research Unit of Clinical Medicine, Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Vesa-Matti Pohjanen
- Cancer and Translational Medicine Research Unit, Medical Research Centre Oulu, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Ritva Ylikärppä
- Department of General Surgery, Oulu University Hospital, and Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Merja Hurskainen
- Department of Ophthalmology, Oulu University Hospital, and Research Unit of Clinical Medicine, Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Anne Heikkinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|