1
|
Gao X, Bayraktutan U. Substance P reversibly compromises the integrity and function of blood-brain barrier. Peptides 2023:171048. [PMID: 37390897 DOI: 10.1016/j.peptides.2023.171048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Substance P (SP) plays a role in vasodilatation and tissue integrity through its receptor, neurokinin 1 (NK1R). However, its specific effect on blood-brain barrier (BBB) remains unknown. METHODS The impact of SP on the integrity/function of human BBB model in vitro, composed of brain microvascular endothelial cells (BMECs), astrocytes and pericytes, was assessed by measurements of transendothelial electrical resistance and paracellular flux of sodium fluorescein (NaF), respectively in the absence/presence of specific inhibitors targeting NK1R (CP96345), Rho-associated protein kinase (ROCK; Y27632) and nitric oxide synthase (NOS; N(G)-nitro-L-arginine methyl ester). Sodium nitroprusside (SNP), a NO donor, was employed as a positive control. The levels of tight junction proteins, zonula occludens-1, occludin and claudin-5 alongside RhoA/ROCK/myosin regulatory light chain-2 (MLC2) and extracellular signal‑regulated protein kinase (Erk1/2) proteins were detected by western analyses. Subcellular localisations of F-actin and tight junction proteins were visualized by immunocytochemistry. Flow cytometry was used to detect transient calcium release. RESULTS Exposure to SP increased RhoA, ROCK2 and phosphorylated serine-19 MLC2 protein levels and Erk1/2 phosphorylation in BMECs which were abolished by CP96345. These increases were independent of the changes in intracellular calcium availability. SP perturbed BBB in a time-dependent fashion through induction of stress fibres. Changes in tight junction protein dissolution or relocalisation were not involved in SP-mediated BBB breakdown. Inhibition of NOS, ROCK and NK1R mitigated the effect of SP on BBB characteristics and stress fibre formation. CONCLUSION SP promoted a reversible decline in BBB integrity independent of tight junction proteins expression or localisation.
Collapse
Affiliation(s)
- Xin Gao
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
2
|
Heffner K, Hizal DB, Majewska NI, Kumar S, Dhara VG, Zhu J, Bowen M, Hatton D, Yerganian G, Yerganian A, O'Meally R, Cole R, Betenbaugh M. Expanded Chinese hamster organ and cell line proteomics profiling reveals tissue-specific functionalities. Sci Rep 2020; 10:15841. [PMID: 32985598 PMCID: PMC7522264 DOI: 10.1038/s41598-020-72959-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are the predominant production vehicle for biotherapeutics. Quantitative proteomics data were obtained from two CHO cell lines (CHO-S and CHO DG44) and compared with seven Chinese hamster (Cricetulus griseus) tissues (brain, heart, kidney, liver, lung, ovary and spleen) by tandem mass tag (TMT) labeling followed by mass spectrometry, providing a comprehensive hamster tissue and cell line proteomics atlas. Of the 8470 unique proteins identified, high similarity was observed between CHO-S and CHO DG44 and included increases in proteins involved in DNA replication, cell cycle, RNA processing, and chromosome processing. Alternatively, gene ontology and pathway analysis in tissues indicated increased protein intensities related to important tissue functionalities. Proteins enriched in the brain included those involved in acidic amino acid metabolism, Golgi apparatus, and ion and phospholipid transport. The lung showed enrichment in proteins involved in BCAA catabolism, ROS metabolism, vesicle trafficking, and lipid synthesis while the ovary exhibited enrichments in extracellular matrix and adhesion proteins. The heart proteome included vasoconstriction, complement activation, and lipoprotein metabolism enrichments. These detailed comparisons of CHO cell lines and hamster tissues will enhance understanding of the relationship between proteins and tissue function and pinpoint potential pathways of biotechnological relevance for future cell engineering.
Collapse
Affiliation(s)
- Kelley Heffner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.,AstraZeneca, Cell Culture and Fermentation Sciences, Gaithersburg, MD, USA
| | - Deniz Baycin Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia I Majewska
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.,AstraZeneca, Cell Culture and Fermentation Sciences, Gaithersburg, MD, USA
| | - Swetha Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Venkata Gayatri Dhara
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jie Zhu
- AstraZeneca, Cell Culture and Fermentation Sciences, Gaithersburg, MD, USA
| | - Michael Bowen
- Allogene Therapeutics, Product and Process Development, South San Francisco, CA, USA
| | - Diane Hatton
- AstraZeneca, Cell Culture and Fermentation Sciences, Gaithersburg, MD, USA
| | | | | | - Robert O'Meally
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert Cole
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Chen J, Tan W. Platelet activation and immune response in diabetic microangiopathy. Clin Chim Acta 2020; 507:242-247. [DOI: 10.1016/j.cca.2020.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 01/19/2023]
|
4
|
Hamel-Côté G, Lapointe F, Gendron D, Rola-Pleszczynski M, Stankova J. Regulation of platelet-activating factor-induced interleukin-8 expression by protein tyrosine phosphatase 1B. Cell Commun Signal 2019; 17:21. [PMID: 30832675 PMCID: PMC6399872 DOI: 10.1186/s12964-019-0334-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Platelet-activating factor (PAF) is a potent lipid mediator whose involvement in the onset and progression of atherosclerosis is mediated by, among others, the modulation of cytokine expression patterns. The presence of multiple potential protein-tyrosine phosphatase (PTP) 1B substrates in PAF receptor signaling pathways brought us to investigate its involvement in PAF-induced cytokine expression in monocyte-derived dendritic cells (Mo-DCs) and to study the pathways involved in this modulation. Methods We used in-vitro-matured human dendritic cells and the HEK-293 cell line in our studies. PTP1B inhibition was though siRNAs and a selective inhibitor. Cytokine expression was studied with RT-PCR, luciferase assays and ELISA. Phosphorylation status of kinases and transcription factors was studied with western blotting. Results Here, we report that PTP1B was involved in the modulation of cytokine expression in PAF-stimulated Mo-DCs. A study of the down-regulation of PAF-induced IL-8 expression, by PTP1B, showed modulation of PAF-induced transactivation of the IL-8 promoter which was dependent on the presence of the C/EBPß -binding site. Results also suggested that PTP1B decreased PAF-induced IL-8 production by a glycogen synthase kinase (GSK)-3-dependent pathway via activation of the Src family kinases (SFK). These kinases activated an unidentified pathway at early stimulation times and the PI3K/Akt signaling pathway in a later phase. This change in GSK-3 activity decreased the C/EBPß phosphorylation levels of the threonine 235, a residue whose phosphorylation is known to increase C/EBPß transactivation potential, and consequently modified IL-8 expression. Conclusion The negative regulation of GSK-3 activity by PTP1B and the consequent decrease in phosphorylation of the C/EBPß transactivation domain could be an important negative feedback loop by which cells control their cytokine production after PAF stimulation. Electronic supplementary material The online version of this article (10.1186/s12964-019-0334-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geneviève Hamel-Côté
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Fanny Lapointe
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Daniel Gendron
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Center, 2000 College Street, Sherbrooke, QC, Canada
| | - Marek Rola-Pleszczynski
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Jana Stankova
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada.
| |
Collapse
|
5
|
Oluwole OA, Revay T, Mahboubi K, Favetta LA, King WA. Somatic Mosaicism in Bulls Estimated from Genome-Wide CNV Array and TSPY Gene Copy Numbers. Cytogenet Genome Res 2016; 149:176-181. [DOI: 10.1159/000448368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 11/19/2022] Open
Abstract
Somatic mosaicism has become a focus in human research due to the implications of individual genetic variability in disease. Here, we assessed somatic copy number variations (CNVs) in Holstein bulls in 2 respects. We estimated genome-wide CNVs and assayed CNVs of the TSPY gene, the most variable bovine gene from the Y chromosome. Somatic tissues (blood, lung, heart, muscle, testis, and brain) of 4 bulls were arrayed on the Illumina Bovine SNP50k chip and qPCR tested for TSPY copy numbers. Our results showed extensive copy number divergence in tissues within the same animal as well as significant copy number alterations of TSPY. We detected a mean of 31 CNVs per animal among which 14 were of germline origin, as they were constantly present in all investigated tissues of the animal, while 18 were specific to 1 tissue. Thus, 57% of the total number of detected CNVs was the result of de novo somatic events. Further, TSPY copy number was found to vary significantly among tissues as well as among the same tissue type from different animals in a wide range from 7 to 224% of the calibrator. Our study shows significant autosomal and Y-chromosomal de novo somatic CNV in bulls.
Collapse
|
6
|
Jairaman A, Yamashita M, Schleimer RP, Prakriya M. Store-Operated Ca2+ Release-Activated Ca2+ Channels Regulate PAR2-Activated Ca2+ Signaling and Cytokine Production in Airway Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:2122-33. [PMID: 26238490 DOI: 10.4049/jimmunol.1500396] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/30/2015] [Indexed: 01/11/2023]
Abstract
The G-protein-coupled protease-activated receptor 2 (PAR2) plays an important role in the pathogenesis of various inflammatory and auto-immune disorders. In airway epithelial cells (AECs), stimulation of PAR2 by allergens and proteases triggers the release of a host of inflammatory mediators to regulate bronchomotor tone and immune cell recruitment. Activation of PAR2 turns on several cell signaling pathways of which the mobilization of cytosolic Ca(2+) is likely a critical but poorly understood event. In this study, we show that Ca(2+) release-activated Ca(2+) (CRAC) channels encoded by stromal interaction molecule 1 and Orai1 are a major route of Ca(2+) entry in primary human AECs and drive the Ca(2+) elevations seen in response to PAR2 activation. Activation of CRAC channels induces the production of several key inflammatory mediators from AECs including thymic stromal lymphopoietin, IL-6, and PGE2, in part through stimulation of gene expression via nuclear factor of activated T cells (NFAT). Furthermore, PAR2 stimulation induces the production of many key inflammatory mediators including PGE2, IL-6, IL-8, and GM-CSF in a CRAC channel-dependent manner. These findings indicate that CRAC channels are the primary mechanism for Ca(2+) influx in AECs and a vital checkpoint for the induction of PAR2-induced proinflammatory cytokines.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Robert P Schleimer
- Division of Allergy/Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| |
Collapse
|
7
|
Mechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation. Mol Genet Metab Rep 2015; 4:11-8. [PMID: 26966681 PMCID: PMC4777924 DOI: 10.1016/j.ymgmr.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Platelet activating factor (PAF) modulates ovine fetal pulmonary hemodynamic. PAF acts through its receptors (PAFR) in pulmonary vascular smooth muscle cells (PVSMC) to phosphorylate and induce nuclear translocation of NF-kB p65 leading to PVSMC proliferation. However, the interaction of NF-kB p65 and PAF in the nuclear domain to effect PVSMC cell growth is not clearly defined. We used siRNA-dependent translation initiation arrest to study a mechanism by which NF-kB p65 regulates PAF stimulation of PVSMC proliferation. Our hypotheses are: (a) PAF induces NF-kB p65 DNA binding and (b) NF-kB p65 siRNA attenuates PAF stimulation of PVSMC proliferation. For DNA binding, cells were fed 10 nM PAF with and without PAFR antagonists WEB 2170, CV 3988 or BN 52021 and incubated for 12 h. DNA binding was measured by specific ELISA. For NF-kB p65 siRNA effect, starved cells transfected with the siRNA were incubated for 24 h with and without 10 nM PAF. Cell proliferation was measured by DNA synthesis while expression of NF-kB p65 and PAFR protein was measured by Western blotting. In both studies, the effect of 10% FBS alone was used as the positive control. In general, PAF stimulated DNA binding which was inhibited by PAFR antagonists. siRNAs to NF-kB p65 and PAFR significantly attenuated cell proliferation compared to 10% FBS and PAF effect. Inclusion of PAF in siRNA-treated cells did not reverse inhibitory effect of NF-kB p65 siRNA on DNA synthesis. PAFR expression was inhibited in siRNA-treated cells. These data show that PAF-stimulation of PVSMC proliferation occurs via a PAFR-NF-kB p65 linked pathway.
Collapse
|
8
|
Renteria LS, Austin M, Lazaro M, Andrews MA, Lustina J, Raj JU, Ibe BO. RhoA-Rho kinase and platelet-activating factor stimulation of ovine foetal pulmonary vascular smooth muscle cell proliferation. Cell Prolif 2013; 46:563-75. [PMID: 24033386 PMCID: PMC3788060 DOI: 10.1111/cpr.12052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/17/2013] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Platelet-activating factor (PAF) is produced by pulmonary vascular smooth muscle cells (PVSMC). We studied effects of Rho kinase on PAF stimulation of PVSMC proliferation in an attempt to understand the role of RhoA/Rho kinase on PAF-induced ovine foetal pulmonary vascular remodelling. Our hypothesis is that PAF acts through Rho kinase, as one of its downstream signals, to induce arterial (SMC-PA) and venous (SMC-PV) cell proliferation in the hypoxic lung environment of the foetus, in utero. MATERIALS AND METHODS Rho kinase and MAPK effects on PAF receptor (PAFR)-mediated cell population expansion, and PAFR expression, were studied by DNA synthesis, western blot analysis and immunocytochemistry. Effects of constructs T19N and G14V on PAF-induced cell proliferation were also investigated. RESULTS Hypoxia increased PVSMC proliferation and Rho kinase inhibitors, Y-27632 and Fasudil (HA-1077) as well as MAPK inhibitors PD 98059 and SB 203580 attenuated PAF stimulation of cell proliferation. RhoA T19N and G14V stimulated cell proliferation, but co-incubation with PAF did not affect proliferative effects of the constructs. PAFR protein expression was significantly downregulated in both cell types by both Y-27632 and HA-1077, with comparable profiles. Also, cells treated with Y-27632 had less PAF receptor fluorescence with significant disruption of cell morphology. CONCLUSIONS Our results show that Rho kinase non-specifically modulated PAFR-mediated responses by a translational modification of PAFR protein, and suggest that, in vivo, activation of Rho kinase by PAF may be a further pathway to sustain PAFR-mediated PVSMC proliferation.
Collapse
Affiliation(s)
- L. S. Renteria
- Division of NeonatologyDepartment of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA90502USA
| | - M. Austin
- Division of NeonatologyDepartment of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA90502USA
| | - M. Lazaro
- Division of NeonatologyDepartment of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA90502USA
| | - M. A. Andrews
- Division of NeonatologyDepartment of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA90502USA
| | - J. Lustina
- Division of NeonatologyDepartment of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA90502USA
| | - J. U. Raj
- Department of PediatricsUniversity of Illinois ChicagoChicagoIL60612USA
| | - B. O. Ibe
- Division of NeonatologyDepartment of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA90502USA
| |
Collapse
|
9
|
Vesey DA, Suen JY, Seow V, Lohman RJ, Liu L, Gobe GC, Johnson DW, Fairlie DP. PAR2-induced inflammatory responses in human kidney tubular epithelial cells. Am J Physiol Renal Physiol 2013; 304:F737-50. [PMID: 23283995 DOI: 10.1152/ajprenal.00540.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Protease-activated receptor-2 (PAR2) is a G protein-coupled receptor abundantly expressed in the kidney. The aim of this study was to profile inflammatory gene and protein expression induced by PAR2 activation in human kidney tubular epithelial cells (HTEC). A novel PAR2 antagonist, GB88, was used to confirm agonist specificity. Intracellular Ca(2+) (iCa(2+)) mobilization, confocal microscopy, gene expression profiling, qRTPCR, and protein expression were used to characterize PAR2 activation. PAR2 induced a pronounced increase in iCa(2+) concentration that was blocked by the PAR2 antagonist. Treatment with SLIGKV-NH2 at the apical or basolateral cell surface for 5 h induced expression of a range of inflammatory genes by greater than fourfold, including IL-1β, TRAF1, IL-6, and MMP-1, as assessed by cDNA microarray and qRTPCR analysis. Using antibody arrays, GM-CSF, ICAM-1, TNF-α, MMP-1, and MMP-10 were among the induced proteins secreted. Cytokine-specific ELISAs identified three- to sixfold increases in GM-CSF, IL-6, IL-8, and TNF-α, which were blocked by GB88 and protein kinase C inhibitors. Treatment of cells at the basolateral surface induced more potent inflammatory responses, with release of MCP-1 and fibronectin to the apical and basolateral compartments; apical treatment only increased secretion of these factors to the apical compartment. PAR2 activation at the basolateral surface dramatically reduced transepithelial electrical resistance (TEER) whereas apical treatment had no effect. There was very little leakage (<5%) of peptides across the cell monolayer (liquid chromatography-mass spectrometry). In summary, SLIGKV-NH2 induced robust proinflammatory responses in HTEC that were antagonized by GB88. These results suggest that PAR2 antagonists could be useful disease-modifying, anti-inflammatory agents in kidney disease.
Collapse
Affiliation(s)
- David A Vesey
- Centre for Kidney Disease Research, The University of Queensland Department of Medicine at the Princess Alexandra Hospital, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kerschner JE, Hong W, Taylor SR, Kerschner JA, Khampang P, Wrege KC, North PE. A novel model of spontaneous otitis media with effusion (OME) in the Oxgr1 knock-out mouse. Int J Pediatr Otorhinolaryngol 2013; 77. [PMID: 23200873 PMCID: PMC3535456 DOI: 10.1016/j.ijporl.2012.09.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE A novel mouse model with a specific genetic mutation in a G protein coupled receptor (GPCR) encoded by the Oxgr1 gene results in a predisposition to spontaneous otitis media with effusion. As a primary component of interest in OME, mucin expression was examined in this model to assess expression as compared to wild type animals and suitability as a murine model of OME. METHOD Mutant (Oxgr1(-/-)) and wild-type (Oxgr1(+/+)) mice between ages of 2 and 5 months were examined by otoscopy and auditory brainstem response (ABR). Histology changes in the middle ear were evaluated. Expression of mucin genes in the middle ear epithelium was determined using RT-PCR and quantitative PCR. RESULT Otoscopic exam showed signs of inflammation in 82% of mutant mice. Significant elevated ABR thresholds were detected in mutant mice indicating hearing loss. Histology analysis of the middle ears demonstrated the presence of inflammatory cells, changes in the mucosal epithelium, and middle ear fluid. RT PCR using universal primers for bacterial 18s rRNA suggested the absence of bacteria in the middle ear. The knockout mice demonstrated expression of Muc1, Muc2, Muc3, Muc4, Muc5AC, Muc5B, Muc9, Muc10, Muc13, Muc15, Muc16, Muc18, Muc19 and Muc20. There was a trend of increase in Muc5B and Muc19 expression in the middle ear of the knockout mice compared to that of wild-type. There was no significant change in the level of Muc2, and Muc5AC was expressed at a level below the detection limit of quantification. CONCLUSION Development of a murine model with genetic defect has several attractive features. The rate of OME in these animals is high at 82%. It is clear that this OME is related to histopathologic changes in the middle ear epithelium of these knock-out mice. Induction of mucus effusion is evident though the viation in dysregulation of GFM does exist in this non-challenge study condition. The underlying cause of these differences between individual animal requires further investigation. Given this, the Oxgr1(-/-) model is likely to be an ideal model to examine mucin regulation in MEE and potentially develop novel GPCR-specific targeted interventions to regulate these processes.
Collapse
Affiliation(s)
- Joseph E. Kerschner
- Division of Pediatric Otolaryngology, Medical College of Wisconsin, 9000 W. Wisconsin Avenue, Milwaukee, Wisconsin 53226,Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9000 W. Wisconsin Avenue, Milwaukee, Wisconsin 53226
| | - Wenzhou Hong
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9000 W. Wisconsin Avenue, Milwaukee, Wisconsin 53226
| | - Steven R. Taylor
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212
| | - John A. Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9000 W. Wisconsin Avenue, Milwaukee, Wisconsin 53226
| | - Pawjai Khampang
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9000 W. Wisconsin Avenue, Milwaukee, Wisconsin 53226
| | - Kay C. Wrege
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9000 W. Wisconsin Avenue, Milwaukee, Wisconsin 53226
| | - Paula E North
- Pediatric Pathology, Children’s Hospital of Wisconsin, 9000 W. Wisconsin Avenue, Milwaukee, Wisconsin 53226
| |
Collapse
|
11
|
Thomas RS, Clewell HJ, Allen BC, Yang L, Healy E, Andersen ME. Integrating pathway-based transcriptomic data into quantitative chemical risk assessment: A five chemical case study. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 746:135-43. [DOI: 10.1016/j.mrgentox.2012.01.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 12/20/2022]
|
12
|
Inhaled Hydrogen Sulfide Induces Suspended Animation, But Does Not Alter the Inflammatory Response After Blunt Chest Trauma. Shock 2012; 37:197-204. [DOI: 10.1097/shk.0b013e31823f19a0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Hoyle GW, Hoyle CI, Chen J, Chang W, Williams RW, Rando RJ. Identification of triptolide, a natural diterpenoid compound, as an inhibitor of lung inflammation. Am J Physiol Lung Cell Mol Physiol 2010; 298:L830-6. [PMID: 20348278 DOI: 10.1152/ajplung.00014.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammation is associated with various pulmonary diseases and contributes to the pathogenesis of acute lung injury. We previously identified a proinflammatory signaling pathway triggered by G protein-coupled receptors (GPCRs) in which stimulation of G(q)-coupled GPCRs results in activation of the transcription factor NF-kappaB. Because damage to the lung causes the release of multiple mediators acting through G(q)-coupled GPCRs, this signaling pathway is likely to contribute to inflammatory processes in the injured lung. In an effort to identify novel inhibitors of lung inflammation, the National Institutes of Health Clinical Collection, a library of 446 compounds, was screened for inhibitory activity toward production of IL-8 induced by stimulation of the G(q)-coupled tachykinin 1 receptor with substance P in A549 cells. Twenty-eight compounds that significantly inhibited substance P-induced IL-8 production were identified. The most potent inhibitor was triptolide, a diterpenoid compound from Tripterygium wilfordii Hook F, a vine used in traditional Chinese medicine for the treatment of autoimmune diseases. Triptolide inhibited IL-8 production induced by substance P with an IC(50) of 2.3 x 10(-8) M and inhibited NF-kappaB activation in response to an agonist of the protease-activated receptor 2 with an IC(50) of 1.4 x 10(-8) M. Anti-inflammatory effects of triptolide were assessed in vivo using a chlorine gas lung injury model in mice. Triptolide inhibited neutrophilic inflammation and the production of KC (Cxcl1) in the lungs of chlorine-exposed mice. The results demonstrate that triptolide exhibits anti-inflammatory activity in cultured lung cells and in an in vivo model of acute lung injury.
Collapse
Affiliation(s)
- Gary W Hoyle
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Sio SWS, Moochhala S, Lu J, Bhatia M. Early protection from burn-induced acute lung injury by deletion of preprotachykinin-A gene. Am J Respir Crit Care Med 2010; 181:36-46. [PMID: 19797759 DOI: 10.1164/rccm.200907-1073oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Burn-induced acute lung injury (ALI) is a common clinical disorder associated with high mortality even in the absence of inhalational injury. Identification of endogenous triggers that mediate the early onset of remote ALI after burn represents an important goal but remains poorly defined. OBJECTIVES We investigated the role of proinflammatory neuropeptide, substance P (SP), in instigating remote ALI and its effects on respiratory function early after severe local burn injury. METHODS A 30% total body surface area full-thickness burn was induced in wild-type (WT) mice, preprotachykinin-A (PPT-A) gene deficient mice, which encodes for SP, and PPT-A(-/-) mice challenged with exogenous SP, followed by ALI and lung function analysis. MEASUREMENTS AND MAIN RESULTS Endogenous SP production was heightened in burn-injured WT mice, which induced significant elevation of proinflammatory cytokines, chemokines, and endothelial adhesion molecules concurrent with disruption of pulmonary permeability barrier, excessive neutrophil infiltration, and severe ALI. Additionally, decreased neutral endopeptidase and elevated matrix metalloproteinase-9 were evident. Notably, disruption of respiratory function demonstrates a critical role of SP in lungs after burn. These effects were significantly attenuated in PPT-A(-/-) mice, whereas the exogenous administration of SP to PPT-A(-/-) mice restored the inflammatory response and ALI. Furthermore, analysis of neurokinin-1-receptor (NK1R), to which SP binds preferentially, revealed that SP in conjunction with burn injury regulates NK1R expression. CONCLUSIONS We show that the absence of a single endogenous factor, SP, significantly provides early protection against burn-induced ALI in mice with marked improvement in respiratory function. Thereby, the blockade of SP may be beneficial in preventing early inflammation and ALI in patients with critical burn injuries.
Collapse
Affiliation(s)
- Selena W S Sio
- Department of Pharmacology, National University of Singapore, Singapore
| | | | | | | |
Collapse
|