1
|
Martín-Vicente P, López-Martínez C, López-Alonso I, Exojo-Ramírez SM, Duarte-Herrera ID, Amado-Rodríguez L, Ordoñez I, Cuesta-Llavona E, Gómez J, Campo N, O'Kane CM, McAuley DF, Huidobro C, Albaiceta GM. Mechanical Stretch Induces Senescence of Lung Epithelial Cells and Drives Fibroblast Activation by Paracrine Mechanisms. Am J Respir Cell Mol Biol 2025; 72:195-205. [PMID: 39133930 DOI: 10.1165/rcmb.2023-0449oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/12/2024] [Indexed: 02/01/2025] Open
Abstract
Severe lung injury requiring mechanical ventilation may lead to secondary fibrosis. Senescence, a cell response characterized by cell cycle arrest and a shift toward a proinflammatory/profibrotic phenotype, is one of the involved mechanisms. In this study, we explore the contribution of mechanical stretch as a trigger of senescence of the respiratory epithelium and its link with fibrosis. Human lung epithelial cells and fibroblasts were exposed in vitro to mechanical stretch, and senescence was assessed. In addition, fibroblasts were exposed to culture media preconditioned by senescent epithelial cells, and their activation was studied. Transcriptomic profiles from stretched, senescent epithelial cells and activated fibroblasts were combined to identify potential activated pathways. Finally, the senolytic effects of digoxin were tested in these models. Mechanical stretch induced senescence in lung epithelial cells, but not in fibroblasts. This stretch-induced senescence has specific features compared with senescence induced by doxorubicin. Fibroblasts were activated after exposure to supernatants conditioned by epithelial senescent cells. Transcriptomic analyses revealed Notch signaling as potentially responsible for the epithelial-mesenchymal cross-talk, because blockade of this pathway inhibits fibroblast activation. Treatment with digoxin reduced the percentage of senescent cells after stretch and ameliorated the fibroblast response to preconditioned media. These results suggest that lung fibrosis in response to mechanical stretch may be caused by the paracrine effects of senescent cells. This pathogenetic mechanism can be pharmacologically manipulated to improve lung repair.
Collapse
Affiliation(s)
- Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Inés López-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Sara M Exojo-Ramírez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Israel David Duarte-Herrera
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Laura Amado-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Departamento de Medicina
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
- Unidad de Cuidados Intensivos Cardiológicos and
| | - Irene Ordoñez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
| | - Elias Cuesta-Llavona
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Servicio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain; and
| | - Juan Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Servicio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain; and
| | - Natalia Campo
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | | | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
- Unidad de Cuidados Intensivos Cardiológicos and
| |
Collapse
|
2
|
Livanos A, Bouchoris K, Aslani KE, Gourgoulianis K, Bontozoglou V. Prediction of shear stress imposed on alveolar epithelium of healthy and diseased lungs. Biomech Model Mechanobiol 2024; 23:2213-2227. [PMID: 39305387 DOI: 10.1007/s10237-024-01889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/12/2024] [Indexed: 11/13/2024]
Abstract
Lung alveoli are modeled as spherical caps, lined internally by a thin surfactant-laden liquid film, and the periodic wall shear stress exerted along the epithelium during small-amplitude radial oscillations of their wall is computed. A novel set of boundary conditions, applied at the rim, reveals the dominant role of Marangoni stresses. These stresses develop along the air/liquid interface due to spatial gradients of interfacial surfactant concentration and are transported to the wall by the action of viscosity. The effect of a variety of geometric and functional characteristics, including rim interstitial thickness, alveolar opening angle and liquid film thickness and viscosity, is interrogated, and the results are discussed in relation to the onset and evolution of acute and chronic lung diseases, such as asthmatic attacks, pulmonary emphysema and pulmonary fibrosis.
Collapse
|
3
|
Qiu B, Zhang ZL, Zhao XH, Wang CM, Wang T, Wang ZP. Acute exacerbation of postoperative idiopathic pulmonary fibrosis in a patient with lung cancer caused by invasive mechanical ventilation: A case report. Heliyon 2023; 9:e21538. [PMID: 38027643 PMCID: PMC10665659 DOI: 10.1016/j.heliyon.2023.e21538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Study design and objection Idiopathic pulmonary fibrosis (IPF) is a progressive chronic disease characterized by damage to alveolar epithelial cells and abnormal deposition of the extracellular matrix. Although the disease course for most patients with IPF is progressive, in some cases the disease may appear as an acute exacerbation. Mechanical ventilation life support plays an important role in the treatment of patients with IPF but is associated with an increased risk of acute exacerbation of IPF (AE-IPF). Treatment is controversial and is not supported by sufficient clinical evidence. AE-IPF after lung cancer surgery is extremely rare, and the etiology and mechanism remain unclear, and its clinical manifestations are very similar to acute pulmonary edema and are easily misdiagnosed. Summaryof background data We describe a 66-year-old male patient with IPF complicated with lung cancer who underwent thoracoscopic resection of the right upper lobe of the lung. Seventy-two hours after surgery, chest computed tomography indicated that AE-IPF in the mechanically ventilated lung was significantly greater than that in the operated lung. The patient's own lung was used as a control and proved that mechanical ventilation can lead to AE-IPF. Results and conclusions By highlighting the clinical characteristics of patients with acute exacerbation of idiopathic pulmonary fibrosis, this article will enhance the vigilance of clinicians on AE-IPF caused by mechanical ventilation. Importantly, preoperative nintedanib therapy should be applied in advance to prevent AE-IPF on in patients with mild IPF. Precise pulmonary protective ventilation strategies need to be formulated for patients with IPF to reduce mortality.
Collapse
Affiliation(s)
- Bin Qiu
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zhen Liang Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiao Hua Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chun Mei Wang
- Department of Intensive Care Unit, Affiliated Hospital of Weifang Medical University, WeiFang, China
| | - Tong Wang
- Weifang Medical University, Weifang, China
| | - Zhi Peng Wang
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
4
|
Doryab A, Heydarian M, Yildirim AÖ, Hilgendorff A, Behr J, Schmid O. Breathing-induced stretch enhances the efficacy of an inhaled and orally delivered anti-fibrosis drug in vitro. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
5
|
Lin C, Zheng X, Lin S, Zhang Y, Wu J, Li Y. Mechanotransduction Regulates the Interplays Between Alveolar Epithelial and Vascular Endothelial Cells in Lung. Front Physiol 2022; 13:818394. [PMID: 35250619 PMCID: PMC8895143 DOI: 10.3389/fphys.2022.818394] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
Mechanical stress plays a critical role among development, functional maturation, and pathogenesis of pulmonary tissues, especially for the alveolar epithelial cells and vascular endothelial cells located in the microenvironment established with vascular network and bronchial-alveolar network. Alveolar epithelial cells are mainly loaded by cyclic strain and air pressure tension. While vascular endothelial cells are exposed to shear stress and cyclic strain. Currently, the emerging evidences demonstrated that non-physiological mechanical forces would lead to several pulmonary diseases, including pulmonary hypertension, fibrosis, and ventilation induced lung injury. Furthermore, a series of intracellular signaling had been identified to be involved in mechanotransduction and participated in regulating the physiological homeostasis and pathophysiological process. Besides, the communications between alveolar epithelium and vascular endothelium under non-physiological stress contribute to the remodeling of the pulmonary micro-environment in collaboration, including hypoxia induced injuries, endothelial permeability impairment, extracellular matrix stiffness elevation, metabolic alternation, and inflammation activation. In this review, we aim to summarize the current understandings of mechanotransduction on the relation between mechanical forces acting on the lung and biological response in mechanical overloading related diseases. We also would like to emphasize the interplays between alveolar epithelium and vascular endothelium, providing new insights into pulmonary diseases pathogenesis, and potential targets for therapy.
Collapse
Affiliation(s)
- Chuyang Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jinlin Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Aitong W, Leisheng Z, Hao Y. Visualized analyses of investigations upon mesenchymal stem/stromal cell-based cytotherapy and underlying mechanisms for COVID-19 associated ARDS. Curr Stem Cell Res Ther 2021; 17:2-12. [PMID: 34254927 DOI: 10.2174/1574888x16666210712212421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a widespread pandemic globally and seriously threatened the public health. Patients with COVID-19 infection, and in particular, those with severe pneumonia-associated acute respiratory distress syndrome (ARDS) manifested rapid disease progression and the resultant high mortality and morbidity. Advances in fundamental and clinical studies have suggested the feasibility of mesenchymal stem/stromal cell (MSC)-based therapy as an inspiring alternative for ARDS administration. However, the systematic characteristics of the MSC-based cytotherapy and underlying mechanism for COVID-19 associated ARDS by bibliometric analyses are still unknowable. Herein, we took advantage of visual analyses to reveal the overview of ARDS-associated updates, core authors and focused issues, as well as to summarize the comprehensive knowledge of the keywords, authors, institutions with the aid of indicated software. Meanwhile, we have provided a brief overview on the molecular mechanisms and discussed the safety and efficacy of MSC-based therapy for ARDS on the basis of clinical trials.
Collapse
Affiliation(s)
- Wang Aitong
- National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin 300457, China
| | - Zhang Leisheng
- Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, 301700, China
| | - Yu Hao
- The Postdoctoral Research Station, School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Liu Y, Nie H, Ding Y, Hou Y, Mao K, Cui Y. MiRNA, a New Treatment Strategy for Pulmonary Fibrosis. Curr Drug Targets 2021; 22:793-802. [PMID: 32988351 DOI: 10.2174/1874609813666200928141822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
Pulmonary fibrosis (PF) is the most common chronic, progressive interstitial lung disease, mainly occurring in the elderly, with a median survival of 2-4 years after diagnosis. Its high mortality rate attributes to the delay in diagnosis due to its generic symptoms, and more importantly, to the lack of effective treatments. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are involved in many essential cellular processes, including extracellular matrix remodeling, alveolar epithelial cell apoptosis, epithelial-mesenchymal transition, etc. We summarized the dysregulated miRNAs in TGF-β signaling pathway-mediated PF in recent years with dual effects, such as anti-fibrotic let-7 family and pro-fibrotic miR-21 members. Therefore, this review will set out the latest application of miRNAs to provide a new direction for PF treatment.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Kejun Mao
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Yang J, Pan X, Wang L, Yu G. Alveolar cells under mechanical stressed niche: critical contributors to pulmonary fibrosis. Mol Med 2020; 26:95. [PMID: 33054759 PMCID: PMC7556585 DOI: 10.1186/s10020-020-00223-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis arises from the repeated epithelial mild injuries and insufficient repair lead to over activation of fibroblasts and excessive deposition of extracellular matrix, which result in a mechanical stretched niche. However, increasing mechanical stress likely exists before the establishment of fibrosis since early micro injuries increase local vascular permeability and prompt cytoskeletal remodeling which alter cellular mechanical forces. It is noteworthy that COVID-19 patients with severe hypoxemia will receive mechanical ventilation as supportive treatment and subsequent pathology studies indicate lung fibrosis pattern. At advanced stages, mechanical stress originates mainly from the stiff matrix since boundaries between stiff and compliant parts of the tissue could generate mechanical stress. Therefore, mechanical stress has a significant role in the whole development process of pulmonary fibrosis. The alveoli are covered by abundant capillaries and function as the main gas exchange unit. Constantly subject to variety of damages, the alveolar epithelium injuries were recently recognized to play a vital role in the onset and development of idiopathic pulmonary fibrosis. In this review, we summarize the literature regarding the effects of mechanical stress on the fundamental cells constituting the alveoli in the process of pulmonary fibrosis, particularly on epithelial cells, capillary endothelial cells, fibroblasts, mast cells, macrophages and stem cells. Finally, we briefly review this issue from a more comprehensive perspective: the metabolic and epigenetic regulation.
Collapse
Affiliation(s)
- Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Xin Pan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
9
|
Kunisaki SM, Jiang G, Biancotti JC, Ho KKY, Dye BR, Liu AP, Spence JR. Human induced pluripotent stem cell-derived lung organoids in an ex vivo model of the congenital diaphragmatic hernia fetal lung. Stem Cells Transl Med 2020; 10:98-114. [PMID: 32949227 PMCID: PMC7780804 DOI: 10.1002/sctm.20-0199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 08/09/2020] [Indexed: 01/06/2023] Open
Abstract
Three‐dimensional lung organoids (LOs) derived from pluripotent stem cells have the potential to enhance our understanding of disease mechanisms and to enable novel therapeutic approaches in neonates with pulmonary disorders. We established a reproducible ex vivo model of lung development using transgene‐free human induced pluripotent stem cells generated from fetuses and infants with Bochdalek congenital diaphragmatic hernia (CDH), a polygenic disorder associated with fetal lung compression and pulmonary hypoplasia at birth. Molecular and cellular comparisons of CDH LOs revealed impaired generation of NKX2.1+ progenitors, type II alveolar epithelial cells, and PDGFRα+ myofibroblasts. We then subjected these LOs to disease relevant mechanical cues through ex vivo compression and observed significant changes in genes associated with pulmonary progenitors, alveolar epithelial cells, and mesenchymal fibroblasts. Collectively, these data suggest both primary cell‐intrinsic and secondary mechanical causes of CDH lung hypoplasia and support the use of this stem cell‐based approach for disease modeling in CDH.
Collapse
Affiliation(s)
- Shaun M Kunisaki
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Guihua Jiang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Juan C Biancotti
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Briana R Dye
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Jiang ZF, Zhang L, Shen J. MicroRNA: Potential biomarker and target of therapy in acute lung injury. Hum Exp Toxicol 2020; 39:1429-1442. [PMID: 32495695 DOI: 10.1177/0960327120926254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs stretching over 18-22 nucleotides and considered to be modifiers of many respiratory diseases. They are highly evolutionary conserved and have been implicated in several biological processes, including cell proliferation, apoptosis, differentiation, among others. Acute lung injury (ALI) is a fatal disease commonly caused by direct or indirect injury factors and has a high mortality rate in intensive care unit. Changes in expression of several types of miRNAs have been reported in patients with ALI. Some miRNAs suppress cellular injury and accelerate the recovery of ALI by targeting specific molecules and decreasing excessive immune response. For this reason, miRNAs are proposed as potential biomarkers for ALI and as therapeutic targets for this disease. This review summarizes current evidence supporting the role of miRNAs in ALI.
Collapse
Affiliation(s)
- Z-F Jiang
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - L Zhang
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - J Shen
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|