Hou M, Liu T, Zhang B, Chen B, Li Q, Liu X, Lu C, Wang Z, Dang L. Alpha-linolenic acid-loaded oil/water microemulsion: Effects of phase behaviour simulation and environmental stress on phase stabilizing and anti-oxidation capacity.
Food Chem 2018;
256:311-318. [PMID:
29606454 DOI:
10.1016/j.foodchem.2018.02.100]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/13/2018] [Accepted: 02/19/2018] [Indexed: 12/29/2022]
Abstract
α-Linolenic acid (ALA)-loaded microemulsion (ME) was prepared from isoamyl acetate, polyoxyethylene ether 35 (EL-35), ethanol and water. The dynamic phase behaviour was simulated using dissipative particle dynamics (DPD), which showed that spherical ME was formed at water/oil ratios of 1:9 and 9:1, while a lamellar structure with distinctive water-course and oil layer appeared at ratios of 3:7, 5:5, and 7:3. Phase stabilizing and anti-oxidation effect of environmental stresses on ALA-loaded microemulsion were investigated. Results showed that the ME region was large and had good environmental tolerance. Subsequently, the investigation of anti-oxidation stability revealed that more than 60% ALA of ALA-loaded ME could be protected from oxidation under environmental stresses. Furthermore, ALA-loaded ME was applied in aqueous-based foods. The transparency, precipitate, stratification and phase separation were used to evaluate influence of ME on product properties, confirming great feasibility and stability of ALA-loaded ME for practical applications.
Collapse