Sattari A, Hanafizadeh P, Hoorfar M. Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures.
Adv Colloid Interface Sci 2020;
282:102208. [PMID:
32721624 DOI:
10.1016/j.cis.2020.102208]
[Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
Microfluidic technologies have a unique ability to control more precisely and effectively on two-phase flow systems in comparison with macro systems. Controlling the size of the droplets and bubbles has led to an ever-increasing expansion of this technology in two-phase systems. Liquid-liquid and gas-liquid two-phase flows because of their numerous applications in different branches such as reactions, synthesis, emulsions, cosmetic, food, drug delivery, etc. have been the most critical two-phase flows in microfluidic systems. This review highlights recent progress in two-phase flows in microfluidic devices. The fundamentals of two-phase flows, including some essential dimensionless numbers, governing equations, and some most well-known numerical methods are firstly introduced, followed by a review of standard methods for producing segmented flows such as emulsions in microfluidic systems. Then various encapsulated structures, a common two-phase flow structure in microfluidic devices, and different methods of their production are reviewed. Finally, applications of two-phase microfluidic flows in drug-delivery, biotechnology, mixing, and microreactors are briefly discussed.
Collapse