1
|
Lobel B, Baiocco D, Al-Sharabi M, Routh AF, Zhang Z, Cayre OJ. Current Challenges in Microcapsule Designs and Microencapsulation Processes: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40326-40355. [PMID: 39042830 PMCID: PMC11311140 DOI: 10.1021/acsami.4c02462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
Microencapsulation is an advanced methodology for the protection, preservation, and/or delivery of active materials in a wide range of industrial sectors, such as pharmaceuticals, cosmetics, fragrances, paints, coatings, detergents, food products, and agrochemicals. Polymeric materials have been extensively used as microcapsule shells to provide appropriate barrier properties to achieve controlled release of the encapsulated active ingredient. However, significant limitations are associated with such capsules, including undesired leaching and the nonbiodegradable nature of the typically used polymers. In addition, the energy cost of manufacturing microcapsules is an important factor to be considered when designing microcapsule systems and the corresponding production processes. Recent factors linked to UN sustainability goals are modifying how such microencapsulation systems should be designed in pursuit of "ideal" microcapsules that are efficient, safe, cost-effective and environmentally friendly. This review provides an overview of advances in microencapsulation, with emphasis on sustainable microcapsule designs. The key evaluation techniques to assess the biodegradability of microcapsules, in compliance with recently evolving European Union requirements, are also described. Moreover, the most common methodologies for the fabrication of microcapsules are presented within the framework of their energy demand. Recent promising microcapsule designs are also highlighted for their suitability toward meeting current design requirements and stringent regulations, tackling the ongoing challenges, limitations, and opportunities.
Collapse
Affiliation(s)
- Benjamin
T. Lobel
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse LS2 9JT, United Kingdom
| | - Daniele Baiocco
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mohammed Al-Sharabi
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Alexander F. Routh
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Zhibing Zhang
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Olivier J. Cayre
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods 2022; 11:foods11192973. [PMID: 36230050 PMCID: PMC9564298 DOI: 10.3390/foods11192973] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Various potential sources of bioactive components exist in nature which are fairly underutilized due to the lack of a scientific approach that can be sustainable as well as practically feasible. The recovery of bioactive compounds is a big challenge and its use in food industry to develop functional foods is a promising area of research. Various techniques are available for the extraction of these bioactives but due to their thermolabile nature, there is demand for nonthermal or green technologies which can lower the cost of operation and decrease operational time and energy consumption as compared to conventional methods. Ultrasound-assisted extraction (UAE) is gaining popularity due to its relative advantages over solvent extraction. Thereafter, ultrasonication as an encapsulating tool helps in protecting the core components against adverse food environmental conditions during processing and storage. The review mainly aims to discuss ultrasound technology, its applications, the fundamental principles of ultrasonic-assisted extraction and encapsulation, the parameters affecting them, and applications of ultrasound-assisted extraction and encapsulation in food systems. Additionally, future research areas are highlighted with an emphasis on the energy sustainability of the whole process.
Collapse
|
3
|
Eom SJ, Park J, Kang M, Lee NH, Song K. Use of ultrasound treatment to extract mannan polysaccharide from
Saccharomyces cerevisiae. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Su Jin Eom
- Food Convergence Research Division Korea Food Research Institute Wanju‐gun Jeollabuk‐do Republic of Korea
| | - Jong‐Tae Park
- Department of Food Science and Technology Chungnam National University Daejeon Republic of Korea
| | - Min‐Cheol Kang
- Food Convergence Research Division Korea Food Research Institute Wanju‐gun Jeollabuk‐do Republic of Korea
| | - Nam Hyouck Lee
- Food Convergence Research Division Korea Food Research Institute Wanju‐gun Jeollabuk‐do Republic of Korea
| | - Kyung‐Mo Song
- Food Convergence Research Division Korea Food Research Institute Wanju‐gun Jeollabuk‐do Republic of Korea
| |
Collapse
|
4
|
Nelluri P, Venkatesh T, Kothakota A, Pandiselvam R, Garg R, Eswaran V, Vaddevolu UBP, Venkatesh R, Mousavi Khaneghah A. Recent advances in non‐thermal and thermal processing of Jackfruit (
Artocarpus heterophyllus Lam)
: an updated review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Puja Nelluri
- Department of Agriculture and Food Engineering Indian Institute of Technology Kharagpur West Beng India
| | - T. Venkatesh
- Agro‐Processing & Technology Division, CSIR‐National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum‐695019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad‐201 001 India
| | - Anjineyulu Kothakota
- Agro‐Processing & Technology Division, CSIR‐National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum‐695019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad‐201 001 India
| | - R. Pandiselvam
- Physiology, Biochemistry, and Post‐harvest Technology Division, ICAR‐Central Plantation Crops Research Institute Kasaragod Kerala India
| | - Ramandeep Garg
- Department of Computer Information Systems University of Malta Msida MSD Malta
| | - Vishnu Eswaran
- Agro‐Processing & Technology Division, CSIR‐National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum‐695019 Kerala India
| | - Uday Bhanu Prakash Vaddevolu
- Department of Agricultural and Biosystems Engineering North Dakota State University 1221 Albrecht Boulevard Farg ND USA
| | - R. Venkatesh
- Agro‐Processing & Technology Division, CSIR‐National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum‐695019 Kerala India
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering University of Campinas (UNICAMP) Campinas, Sao Paulo Brazil
| |
Collapse
|
5
|
Nelluri P, Venkatesh T, Kothakota A, Pandiselvam R, Garg R, Mousavi Khaneghah A. Artocarpus heterophyllus Lam
(jackfruit) processing equipment: Research insights and perspectives. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Puja Nelluri
- Department of Agriculture and Food Engineering Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Thulasiraman Venkatesh
- Agro‐Processing and Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum Kerala India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Anjineyulu Kothakota
- Agro‐Processing and Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum Kerala India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post‐Harvest Technology Division ICAR‐Central Plantation Crops Research Institute Kasaragod Kerala India
| | - Ramandeep Garg
- Department of Computer Information Systems University of Malta Msida Malta
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| |
Collapse
|
6
|
Iñiguez-Moreno M, Ragazzo-Sánchez JA, Barros-Castillo JC, Solís-Pacheco JR, Calderón-Santoyo M. Characterization of sodium alginate coatings with Meyerozyma caribbica and impact on quality properties of avocado fruit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Rivera-Aguilar JO, Calderón-Santoyo M, González-Cruz EM, Ramos-Hernández JA, Ragazzo-Sánchez JA. Encapsulation by Electrospraying of Anticancer Compounds from Jackfruit Extract ( Artocarpus heterophyllus Lam): Identification, Characterization and Antiproliferative Properties. Anticancer Agents Med Chem 2021; 21:523-531. [PMID: 32753023 DOI: 10.2174/1871520620666200804102952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/25/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Compounds with biological activities had been reported in the jackfruit. These compounds are susceptible to structural changes such as isomerization and/or loss of bonds due to environmental factors. Then, the encapsulation for protecting is a necessary process. OBJECTIVE In this study, encapsulation of High-Value Biological Compounds (HVBC) was performed using High Degree of Polymerization Agave Fructans (HDPAF) and Whey Protein (WP) as encapsulating materials to preserve the biological properties of the HVBC. METHODS The extract was characterized by HPLC-MS in order to show the presence of compounds with preventive or therapeutic effects on chronic degenerative diseases such as cancer. The micrographs by Scanning Electron Microscopy (SEM), Thermal Analysis (TGA and DSC), photostabilization and antiproliferation of M12.C3.F6 cell line of capsules were evaluated. RESULTS The micrographs of the nanocapsules obtained by Scanning Electron Microscopy (SEM) showed spherical capsules with sizes between 700 and 800nm. No cracks, dents or deformations were observed. The Thermogravimetric Analysis (TGA) evidenced the decomposition of the unencapsulated extract ranging from 154 to 221°C. On the other hand, the fructan-whey protein mixture demonstrated that nanocapsules have a thermoprotective effect because the decomposition temperature of the encapsulated extract increased 32.1°C. Differential Scanning Calorimetry (DSC) exhibited similar values of the glass transition temperature (Tg) between the capsules with and without extract; which indicates that the polymeric material does not interact with the extract compounds. The photoprotection study revealed that nanocapsules materials protect the jackfruit extract compounds from the UV radiation. Finally, the cell viability on the proliferation of M12.C3.F6 cell line was not affected by powder nanocapsules without jackfruit extract, indicating that capsules are not toxic for these cells. However, microcapsules with jackfruit extract (50μg/ml) were able to inhibit significantly the proliferation cells. CONCLUSION The encapsulation process provides thermoprotection and photostability, and the antiproliferative activity of HVBC from jackfruit extract was preserved.
Collapse
Affiliation(s)
| | | | - Elda M González-Cruz
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Mexico City, Mexico
| | | | | |
Collapse
|
8
|
Miss-Zacarías DM, Iñiguez-Moreno M, Calderón-Santoyo M, Ragazzo-Sánchez JA. Optimization of ultrasound-assisted microemulsions of citral using biopolymers: characterization and antifungal activity. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1857264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Dulce María Miss-Zacarías
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| | - Maricarmen Iñiguez-Moreno
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| |
Collapse
|
9
|
Ramos-Bell S, Calderón-Santoyo M, Barros-Castillo JC, Ragazzo-Sánchez JA. Characterization of submicron emulsion processed by ultrasound homogenization to protect a bioactive extract from sea grape ( Coccoloba uvifera L.). Food Sci Biotechnol 2020; 29:1365-1372. [PMID: 32999743 DOI: 10.1007/s10068-020-00780-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/01/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
In this study, the stability of a submicron emulsion to protect an extract obtained from sea grape fruit (Coccoloba uvifera L.) was evaluated. Extract characterization by MS-HPLC revealed the presence of 3 anthocyanins (cyanidin 3-glucoside, malvidin 3-glucoside, and delphinidin 3-glucoside), the content of total phenols was 263.86 ± 1.86 mg gallic acid equivalent/100 g, with an antioxidant capacity determined by ABTS and DPPH of 128.95 ± 1.00 and 26.18 ± 0.60 μg Trolox equivalents/mL, respectively. A submicron emulsion (0.424 μm) by Ultrasound with monomodal distribution, stable over time and low viscosity (1.94 mPa s) classified as a shear-thinning fluid was obtained. The thermogravimetric analysis (TGA) demonstrated the stability of the C. uvifera extract in the emulsion, which is thermostable (212 °C). These emulsions can be added into a beverage as a nutraceutical, dried for later use as pills or incorporated in foods.
Collapse
Affiliation(s)
- Surelys Ramos-Bell
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Avenida Tecnológico #2595, Col. Lagos del Country, 63175 Tepic, Nayarit Mexico
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Avenida Tecnológico #2595, Col. Lagos del Country, 63175 Tepic, Nayarit Mexico
| | - Julio César Barros-Castillo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Avenida Tecnológico #2595, Col. Lagos del Country, 63175 Tepic, Nayarit Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Avenida Tecnológico #2595, Col. Lagos del Country, 63175 Tepic, Nayarit Mexico
| |
Collapse
|
10
|
Nwabor OF, Singh S, Marlina D, Voravuthikunchai SP. Chemical characterization, release, and bioactivity of Eucalyptus camaldulensis polyphenols from freeze-dried sodium alginate and sodium carboxymethyl cellulose matrix. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Crude ethanolic extract of Eucalyptus camaldulensis was encapsulated with sodium alginate–sodium carboxymethyl cellulose (CMC) using freeze-drying techniques. The microcapsules were characterized for particle size, morphology, physicochemical parameters, and micromeritics properties. Antioxidant and antimicrobial activities of the microcapsules were also demonstrated. Results revealed an irregular-shaped microparticles with a mean diameter ranging from 6.7 to 26.6 µm. Zeta potential and polydispersity index ranged from −17.01 to 2.23 mV and 0.34 to 0.49, respectively. Percentage yield ranged between 70.4 and 81.5 per cent whereas encapsulation efficiency ranged between 74.2 ± 0.011 and 82.43 ± 0.77 per cent. Swelling index and solubility varied inversely with extract concentration, with a range of 54.4%–84.0% and 18.8%–22.2%, respectively. Antioxidant activities varied directly with the concentration of the extract. Minimum inhibitory and minimum bactericidal concentrations of the microcapsules against Gram-positive foodborne pathogens ranged from 0.19 to 3.12 and 0.19–12.25 mg/ml, respectively. The Higuchi model indicated a time-dependent, delayed, and regulated release of polyphenols at 37°C. The results suggested that alginate–CMC possessed good encapsulant properties that preserved the bioactive extract, thus might be employed for application of natural products in food systems.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sudarshan Singh
- Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Dwi Marlina
- Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|