1
|
Zang J, Xiao P, Liu Z, Liu Y, Zhang Q, Chen J, Yin Z. Preparation and characterization of W/O/W purple potato anthocyanin nanoparticles: Antioxidant effects and gut microbiota improvement in rats. J Food Sci 2024; 89:9901-9922. [PMID: 39437303 DOI: 10.1111/1750-3841.17473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Purple potato anthocyanins (PPAs) are recognized for their broad physiological activities, including significant antioxidant, antimicrobial, and gut microbiota-regulating effects. However, their limited bioavailability in biological systems restricts the full realization of these potentials. In order to improve the bioavailability of PPA, this paper established and optimized the preparation process of W/O/W purple potato anthocyanin nanoparticles (PPA-NPs). Based on the determination of the metabolites of PPA-NPs, in vivo experiments were conducted in rats to investigate the absorption and metabolism, antioxidant activity, and the impact on the intestinal microbiota of PPA-NPs. UPLC-Q-TOF-MSMS analysis showed that the absorption of anthocyanins was increased by 220.36% in rats gavaged with PPA-NPs compared to rats gavaged with PPA directly. Subsequent in vivo experiments revealed that PPA-NPs significantly bolster primary antioxidant markers, evidenced by elevated glutathione and superoxide dismutase levels and reduced malondialdehyde content. Moreover, PPA-NPs were found to positively alter the gut microbiome structure in aged rats, notably increasing the abundance of beneficial bacteria, such as Lactobacillus and Rothia, and improving microbial diversity. These findings suggest that W/O/W PPA-NPs markedly improve the bioavailability of PPAs, showcasing promising antioxidant properties and potential health benefits for gut health in vivo. Overall, this research presents a novel approach for developing nanodelivery systems aimed at enhancing the bioavailability of water-soluble substances.
Collapse
Affiliation(s)
- Jianwei Zang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and engineering, Jiangxi Agricultural University, Nanchang, China
| | - Pinjian Xiao
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zebo Liu
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yuanzhi Liu
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Qingfeng Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jiguang Chen
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and engineering, Jiangxi Agricultural University, Nanchang, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
2
|
Zhi Z, Li H, Geurs I, Lewille B, Liu R, Van der Meeren P, Dewettinck K, van Bockstaele F. Destabilization of a model O/W/O double emulsion: From bulk to interface. Food Chem 2024; 445:138723. [PMID: 38350201 DOI: 10.1016/j.foodchem.2024.138723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Oil-in-water-in-oil (O/W/O) double emulsions are considered an advanced oil-structuring technology that can accomplish multi-functions to improve food quality and nutrition. However, this special structure is thermodynamically unstable. This study formulated a model O/W/O double emulsion with standard surfactants, Tween 80 (4 %) and polyglycerol polyricinoleate (PGPR, 5 %), using a traditional two-step method with different homogenization parameters. Cryo-SEM and GC-FID results show that O/W/O emulsions were successfully formulated, and the release rate (RR) of medium-chain triglycerides (MCT) oil from the inner oil to the outer oil phase increased significantly with 2nd homogenization speed increasing, respectively. Interestingly, the RR of all samples reached about 75 % after 2 months of storage, suggesting that O/W/O emulsions were highly unstable. To explain the observed instability, dynamic interfacial tension and interfacial rheology were performed using a drop shape tensiometer. Results demonstrated that unadsorbed Tween 80 in the intermediate aqueous phase was a key factor in markedly decreasing the interfacial properties of the outer PGPR-assembled film by affecting the interfacial rearrangement. Additionally, it was found that the MCT release showed a positive correlation with the Tween 80 concentration, demonstrating that the formed Tween 80 micelles could transport oil molecules to strengthen the emulsion instability. Taken together, this study reveals the destabilization mechanism of model O/W/O surfactants-stabilized emulsions from bulk to interface, providing highly relevant insights for the design of stable O/W/O double emulsions.
Collapse
Affiliation(s)
- Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Hao Li
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Indi Geurs
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Benny Lewille
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Koen Dewettinck
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Filip van Bockstaele
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| |
Collapse
|
3
|
Nguyen V, Nguyen N, Pham L, Phung T, Nguyen P, Truong V. Gac Fruit Oils Encapsulated by Palm Oil-based Monoacylglycerols: The Effect of Drying Methods. J Oleo Sci 2024; 73:65-71. [PMID: 38171732 DOI: 10.5650/jos.ess23172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Lyotropic liquid crystals (LLCs) are interesting wall-materials for encapsulation technology, in which monoacylglycerols (MAGs) are considered as potential ingredient for LLC formulation. This study, therefore, applied palm oil-based MAGs to encapsulate Gac fruit oils and compared the effect of two drying methods (freeze-drying and spray-drying) on the quality of products during storage. Wall-materials were prepared by ultrasound dispersing MAGs/water mixtures (40/60, w/w) into Pluronic solution (2%, w/w) to formulate LLC dispersions. Then, Gac fruit oils were encapsulated by freeze-drying and spray-drying. Various technologies were applied to characterize the properties of dispersions, the encapsulated powder morphology and the loading capacity. Obtained results showed that LLC dispersions made of palm oilbased MAG were micro- and nano-emulsions which were very convenient for encapsulating Gac fruit oils. For both drying methods, β-carotene of Gac fruit oils was successfully entrapped by MAGs with a high loading capacity (200 µg β-carotene/g powder). The degradation of encapsulated β-carotene after four storage weeks was 10 - 40% and freeze-dried samples showed a better protection effect in comparison to spray-dried samples.
Collapse
Affiliation(s)
- Viet Nguyen
- Faculty of Chemical Engineering and Food Technology, Nong Lam University
| | - Ngan Nguyen
- Faculty of Chemical Engineering and Food Technology, Nong Lam University
| | - Ly Pham
- Faculty of Chemical Engineering and Food Technology, Nong Lam University
| | - Trinh Phung
- Faculty of Chemical Engineering and Food Technology, Nong Lam University
| | - Phuong Nguyen
- Faculty of Chemical Engineering and Food Technology, Nong Lam University
| | - Vinh Truong
- Faculty of Chemical Engineering and Food Technology, Nong Lam University
| |
Collapse
|
4
|
Huang Y, Chang Z, Xia X, Zhao Z, Zhang X, Huang Z, Wu C, Pan X. Current and evolving knowledge domains of cubosome studies in the new millennium. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:176. [DOI: 10.1007/s11051-023-05823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/11/2023] [Indexed: 06/25/2024]
|
5
|
Zhang C, Gao Y, Wu Y, Zheng Z, Xie Y, Li Y, Li B, Pei Y, Liu S. Construction of stable O/W/O multiple emulsions using beeswax to control the melting point of the continuous oil phase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Diep TT, Yoo MJY, Do TTH, Luu HKD, Nguyen TT, Dao DN, Nguyen V. Formulation lyotropic liquid crystals from palm oil‐based monoacylglycerols. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Tung T. Diep
- Department of Chemical Engineering Nong Lam University – Ho Chi Minh City Ho Chi Minh City Vietnam
- School of Science, Faculty of Health and Environment Sciences Auckland University of Technology Auckland New Zealand
| | - Michelle J. Y. Yoo
- School of Science, Faculty of Health and Environment Sciences Auckland University of Technology Auckland New Zealand
| | - Thong T. H. Do
- Department of Chemical Engineering Nong Lam University – Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Hau K. D. Luu
- Department of Chemical Engineering Nong Lam University – Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Tuan T. Nguyen
- Department of Chemical Engineering Nong Lam University – Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Duy N. Dao
- Department of Chemical Engineering Nong Lam University – Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Viet Nguyen
- Department of Chemical Engineering Nong Lam University – Ho Chi Minh City Ho Chi Minh City Vietnam
| |
Collapse
|
7
|
Molteni C, La Motta C, Valoppi F. Improving the Bioaccessibility and Bioavailability of Carotenoids by Means of Nanostructured Delivery Systems: A Comprehensive Review. Antioxidants (Basel) 2022; 11:antiox11101931. [PMID: 36290651 PMCID: PMC9598319 DOI: 10.3390/antiox11101931] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids are bioactive compounds provided by the diet playing a key role in maintaining human health. Therefore, they should be ingested daily in an adequate amount. However, even a varied and well-balanced diet does not guarantee an adequate intake, as both the bioaccessibility and bioavailability of the compounds significantly affect their absorption. This review summarizes the main results achieved in improving the bioaccessibility and bioavailability of carotenoids by means of nanostructured delivery systems, discussing in detail the available lipid-based and biopolymeric nanocarriers at present, with a focus on their formulation and functional efficiency. Although the toxicity profile of these innovative delivery systems is not fully understood, especially for long-term intake, these systems are an effective and valuable approach to increase the availability of compounds of nutritional interest.
Collapse
Affiliation(s)
- Camilla Molteni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2219593
| | - Fabio Valoppi
- Department of Food and Nutrition, University of Helsinki, PL 66, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
- Faculty of Agriculture and Forestry, Helsinki Institute of Sustainability Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Physics, University of Helsinki, PL 64, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Cytryniak A, Żelechowska-Matysiak K, Nazaruk E, Bilewicz R, Walczak R, Majka E, Mames A, Bruchertseifer F, Morgenstern A, Bilewicz A, Majkowska-Pilip A. Cubosomal Lipid Formulation for Combination Cancer Treatment: Delivery of a Chemotherapeutic Agent and Complexed α-Particle Emitter 213Bi. Mol Pharm 2022; 19:2818-2831. [PMID: 35849547 PMCID: PMC9346610 DOI: 10.1021/acs.molpharmaceut.2c00182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we propose tailored lipid liquid-crystalline carriers (cubosomes), which incorporate an anticancer drug (doxorubicin) and complexed short-lived α-emitter (bismuth-213), as a strategy to obtain more effective action toward the cancer cells. Cubosomes were formulated with doxorubicin (DOX) and an amphiphilic ligand (DOTAGA-OA), which forms stable complexes with 213Bi radionuclide. The behavior of DOX incorporated into the carrier together with the chelating agent was investigated, and the drug liberation profile was determined. The experiments revealed that the presence of the DOTAGA-OA ligand affects the activity of DOX when they are incorporated into the same carrier. This unexpected influence was explained based on the results of release studies, which proved the contribution of electrostatics in molecular interactions between the positively charged DOX and negatively charged DOTAGA-OA in acidic and neutral solutions. A significant decrease in the viability of HeLa cancer cells was achieved using sequential cell exposure: first to the radiolabeled cubosomes containing 213Bi complex and next to DOX-doped cubosomes. Therefore, the sequential procedure for the delivery of both drugs encapsulated in cubosomes is suggested for further biological and in vivo studies.
Collapse
Affiliation(s)
- Adrianna Cytryniak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Kinga Żelechowska-Matysiak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Emilia Majka
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Frank Bruchertseifer
- Directorate for Nuclear Safety and Security, European Commission, Joint Research Centre, Postfach 2340, 76125 Karlsruhe, Germany
| | - Alfred Morgenstern
- Directorate for Nuclear Safety and Security, European Commission, Joint Research Centre, Postfach 2340, 76125 Karlsruhe, Germany
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
9
|
Do HV, Nguyen SK, Dao DN, Nguyen V. Influence of dextrose equivalent and storage temperature on food-grade rice bran oil-in-water Pickering emulsion stabilized by rice maltodextrins and sodium caseinate. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2063881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ha V. Do
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Sinh K. Nguyen
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Duy N. Dao
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Viet Nguyen
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Zakaria F, Ashari SE, Mat Azmi ID, Abdul Rahman MB. Recent advances in encapsulation of drug delivery (active substance) in cubosomes for skin diseases. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Zhi Z, Liu R, Wang W, Dewettinck K, Van Bockstaele F. Recent progress in oil-in-water-in-oil (O/W/O) double emulsions. Crit Rev Food Sci Nutr 2022; 63:6196-6207. [PMID: 35081829 DOI: 10.1080/10408398.2022.2029346] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oil-in-water-in-oil (O/W/O) double emulsions are recognized as an advanced design route for oil structuring that shows promising applications in the pharmaceutical, cosmetic, and food fields. This review summarizes the main research advances of O/W/O double emulsions over the past two decades. It mainly focuses on understanding the preparation strategies, stabilization mechanism, and potential applications of O/W/O double emulsions. Several emulsification strategies are discussed, including traditional two-step emulsification method, phase-inversion approach, membrane emulsification, and microfluidic emulsification. Further, the role of interfacial stabilizers and viscosity in the stability of O/W/O double emulsions will be discussed with a focus on synthetic emulsifiers, natural biopolymer sand solid particles for achieving this purpose. Additionally, analytical methods for evaluating the stability of O/W/O double emulsions, such as advanced microscopy, rheology, and labeling assay are reviewed taking into account potential limitations of these characterization techniques. Moreover, possible innovative food applications are highlighted, such as simulating fat substitutes to decrease the trans- or saturated fatty acid content and developing novel delivery and encapsulation systems. This review paves a solid way for the exploration of O/W/O double emulsions toward large-scale implementation within the food industry.
Collapse
Affiliation(s)
- Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Rui Liu
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Koen Dewettinck
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Filip Van Bockstaele
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
12
|
Practical quality attributes of polymeric microparticles with current understanding and future perspectives. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Wiertel-Pochopien A, Batys P, Zawala J, Kowalczuk PB. Synergistic Effect of Binary Surfactant Mixtures in Two-Phase and Three-Phase Systems. J Phys Chem B 2021; 125:3855-3866. [PMID: 33848150 PMCID: PMC8154601 DOI: 10.1021/acs.jpcb.1c00664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Cationic alkyltrimethylammonium
bromides (CnTAB, with n = 8, 12, 16, 18) and their
mixtures with n-octanol as a nonionic surfactant
were chosen as a model system to study the synergistic effect on foamability
(two-phase system) and floatability (three-phase system) of quartz
in the presence of binary mixtures of ionic/nonionic surfactants.
The foam height of one-component solutions and binary mixtures and
floatability of quartz particles were characterized as a function
of the surfactant concentration and the number of carbons (n) in the alkyl chain of CnTAB.
The experimental results of foamability and floatability measurements
in one-component and mixed solutions revealed the synergistic effect,
causing a significant enhancement in the foam height and recovery
of quartz. In the presence of n-octanol, the height
of foam increased remarkably for all CnTAB solutions studied, and this effect, whose magnitude depended
on the CnTAB hydrophobic tail length,
could not be justified by a simple increase in total surfactant concentration.
A similar picture was obtained in the case of flotation response.
The mechanism of synergistic effect observed in mixed CnTAB/n-octanol solutions was proposed.
The discussion was supported by molecular dynamics simulations, and
the probable mechanism responsible for synergism was discussed. In
addition, an analysis allowing accurate determination of the concentration
regimes, where the synergistic effect can be expected, was given.
It was shown that for the two-phase system, the n-octanol molecule preadsorption at the liquid/gas interface causes
an increase in CnTAB adsorption coverage
over the level expected from its equilibrium value in the one-component
solution. In the case of the three-phase system, the synergistic effect
was related to the ionic surfactants serving as an anchor layer for n-octanol, which, in water/n-octanol solution
(one-component system), do not adsorb on the surface of quartz.
Collapse
Affiliation(s)
- Agata Wiertel-Pochopien
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Jan Zawala
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Przemyslaw B Kowalczuk
- Department of Geoscience and Petroleum, Norwegian University of Science and Technology, S. P. Andersens veg 15a, 7031 Trondheim, Norway.,Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
14
|
Pontes JF, Grenha A. Multifunctional Nanocarriers for Lung Drug Delivery. NANOMATERIALS 2020; 10:nano10020183. [PMID: 31973051 PMCID: PMC7074870 DOI: 10.3390/nano10020183] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022]
Abstract
Nanocarriers have been increasingly proposed for lung drug delivery applications. The strategy of combining the intrinsic and more general advantages of the nanostructures with specificities that improve the therapeutic outcomes of particular clinical situations is frequent. These include the surface engineering of the carriers by means of altering the material structure (i.e., chemical modifications), the addition of specific ligands so that predefined targets are reached, or even the tuning of the carrier properties to respond to specific stimuli. The devised strategies are mainly directed at three distinct areas of lung drug delivery, encompassing the delivery of proteins and protein-based materials, either for local or systemic application, the delivery of antibiotics, and the delivery of anticancer drugs-the latter two comprising local delivery approaches. This review addresses the applications of nanocarriers aimed at lung drug delivery of active biological and pharmaceutical ingredients, focusing with particular interest on nanocarriers that exhibit multifunctional properties. A final section addresses the expectations regarding the future use of nanocarriers in the area.
Collapse
Affiliation(s)
- Jorge F. Pontes
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Grenha
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-244-441; Fax: +351-289-800-066
| |
Collapse
|
15
|
Colloidal Probes of PNIPAM-Grafted SiO 2 in Studying the Microrheology of Thermally Sensitive Microgel Suspensions. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/3971953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The complex rheology and the phase behavior of thermally sensitive poly(N-isopropylacrylamide) (PNIPAM) microgels have been investigated in both the swollen and collapsed states by using microrheology. To avoid the interactions between the tracer probes and the PNIPAM microgels, such as the adsorption or the depletion effect, the probes of silica (SiO2) particles have been grafted with PNIPAM chains (SiO2-PNIPAM) and characterized with Fourier transform infrared spectroscopy (FTIR). The successful preparation of SiO2-PNIPAM has also been proved by the investigation of the particle size and morphology with dynamic light scattering (DLS) and transmission electron microscope (TEM) below and beyond the phase transition temperature of PNIPAM. The microrheology of the PNIPAM microgel suspension has been investigated by using the prepared SiO2-PNIPAM particles as microrheological probes, and the results show that the diffusive coefficient of the probes in the swollen state is one-fifth of that in the collapsed state, and the viscosity of the PNIPAM microgel suspension in the swollen state is four times higher than that in the collapsed state, indicating SiO2-PNIPAM is a good probe in the microrheological study of PNIPAM microgel suspensions.
Collapse
|