1
|
O'Bryan SJ, Critchlow A, Fuchs CJ, Hiam D, Lamon S. The contribution of age and sex hormones to female neuromuscular function across the adult lifespan. J Physiol 2025. [PMID: 40349308 DOI: 10.1113/jp287496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/04/2025] [Indexed: 05/14/2025] Open
Abstract
Neuromuscular ageing is characterized by neural and/or skeletal muscle degeneration that decreases maximal force and power. Female neuromuscular ageing occurs earlier in life compared to males, potentially due to sex hormone changes during the menopausal transition. We quantified neuromuscular function in 88 females represented equally over each decade from 18 to 80 years of age and investigated the role of decreased ovarian hormone concentrations following menopause. Neuromuscular assessment included quadriceps maximal voluntary and evoked isometric torque and surface electromyography measurements, plus one-repetition maximum leg press. Voluntary and evoked torques and one-repetition maximum decreased non-linearly with age, with accelerated reductions starting during the fourth decade. An absence of changes in volitional recruitment of existing quadriceps motor units and Ia afferent facilitation of spinal motoneurons suggests that functional decline was largely mediated by impairment in intrinsic peripheral muscle function and/or neuromuscular transmission. Maximal muscle compound action potential amplitude decreased with increasing age for rectus femoris muscle only, indicating increased vulnerability to neuromuscular degeneration compared to vastus lateralis and medialis. In postmenopausal females, some variance was explained by inter-individual differences in quadriceps tissue composition and lifestyle factors, but changes in total or free concentrations of oestradiol, progesterone and/or testosterone were included in all correlations with age-related decreases in isometric voluntary and evoked torques. We demonstrate an accelerated onset of neuromuscular degeneration of peripheral muscular origin around menopause onset associated with changes in sex hormone concentrations. Interventions aimed at mitigating declines in ovarian hormones and their subsequent effects on neuromuscular function after menopause should be further explored. KEY POINTS: Neuromuscular deterioration with age is associated with poor physical function and quality of life in older adults, but female-specific trajectories and mechanisms remain unclear. This study is the first to map neuromuscular function across each decade of the adult lifespan in 88 females from 18 to 80 years old and to examine the potential role of hormonal changes after menopause. We show an accelerated reduction in neuromuscular function, primarily of peripheral muscular origin, that occurs during the fourth decade and coincides with menopause onset. In postmenopausal females, age-related reductions in neuromuscular function can in part be explained by quadriceps lean and intramuscular fat composition, physical activity and protein intake, and sex hormone concentrations. These findings help us better understand the factors that contribute to the loss of neuromuscular function with age in females, enabling the identification of potential therapeutic interventions to prolong female health span.
Collapse
Affiliation(s)
- Steven J O'Bryan
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Annabel Critchlow
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Danielle Hiam
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
2
|
Jin H, Xiao M, Liu L, Kan S, Fu Y, Zhang D. Relationship between physical fatigue and mental fatigue based on multimodal measurement under different load levels. ERGONOMICS 2024; 67:1748-1763. [PMID: 38912844 DOI: 10.1080/00140139.2024.2364667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
Based on multimodal measurement methods of NASA task load index (NASA-TLX), task performance, surface electromyography (sEMG), heart rate (HR), and functional near-infrared spectroscopy (fNIRS), this study conducted experimental measurements and analyses under 16 different load levels of physical fatigue and mental fatigue combination conditions. This study observed the interaction between physical fatigue and mental fatigue at different levels, and at the subjective level, the effect of physical fatigue on mental fatigue was greater than that of mental fatigue on physical fatigue. Secondly, the results of fNIRS analysis showed that the premotor cortex is affected by physical fatigue, and the dorsolateral prefrontal cortex is affected by mental fatigue. Finally, this study constructed a fatigue classification model with an accuracy of 95.3%, which takes multimodal physiological data as input and 16 fatigue states as output. The research results will provide a basis for fatigue analysis, evaluation, and improvement in complex working situations.
Collapse
Affiliation(s)
- Haizhe Jin
- Department of Industrial Engineering, School of Business Administration, Northeastern University, Shenyang, China
| | - Meng Xiao
- Department of Industrial Engineering, School of Business Administration, Northeastern University, Shenyang, China
| | - Li Liu
- Department of Big Data Management and Application, School of Maritime Economics and Management, Dalian Maritime University, Dalian, Liaoning, China
| | - Shuang Kan
- Department of Economics, School of Business Administration, Northeastern University, Shenyang, China
| | - Yongyan Fu
- Department of Ophthalmology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Dawei Zhang
- Director of Human Resources Department, Rizhao Steel Yingkou Medium Plate CO.LTD, Yingkou, Liaoning, China
| |
Collapse
|
3
|
Galindo-Martínez A, Vallés-González JM, López-Valenciano A, Elvira JLL. Alternative Models for Pelvic Marker Occlusion in Cycling. J Appl Biomech 2024; 40:176-182. [PMID: 38176398 DOI: 10.1123/jab.2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Bike fitting aims to optimize riders' positions to improve their performance and reduce the risk of injury. To calculate joint angles, the location of the joint centers of the lower limbs needs to be identified. However, one of the greatest difficulties is the location of the hip joint center due to the frequent occlusion of the anterior superior iliac spine markers. Therefore, the objective of this study was to validate a biomechanical model adapted to cycling (modified pelvic model, MPM), based on the traditional pelvic model (TPM) with an additional lateral technical marker placed on the iliac crests. MPM was also compared with a widely used model in cycling, trochanter model (TM). Thirty-one recreational cyclists pedaled on a roller bike while the movement was captured with a 7-camera VICON system. The position of the hip joint center and knee angle were calculated and compared with the TPM continuously (along 10 pedaling cycles) and discreetly at 90° and 180° crank positions. No significant differences were found in the position of the hip joint center or in the knee flexion/extension angle between the TPM and the MPM. However, there are differences between TPM and TM (variations between 4.1° and 6.9° in favor of the TM at 90° and 180°; P < .001). Bland-Altman graphs comparing the models show an average difference or bias close to 0° (limits of agreement [0.2 to -8.5]) between TPM and MPM in both lower limbs and a mean difference of between -4° and -7° (limits of agreement [-0.6 to -13.2]) when comparing TPM and TM. Given the results, the new cycling pelvic model has proven to be valid compared with the TPM when performing bike fitting studies, with the advantage that the occluded markers are avoided. Despite its simplicity, the TM presents measurement errors that may be relevant when making diagnoses, which makes its usefulness questionable.
Collapse
Affiliation(s)
| | | | - Alejandro López-Valenciano
- Department of Education Science, Universidad Cardenal Herrera-CEU, CEU Universities, Castellon de la Plana, Spain
| | - Jose L L Elvira
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University, Elche, Spain
| |
Collapse
|
4
|
O'Bryan SJ, Taylor JL, D'Amico JM, Rouffet DM. Quadriceps Muscle Fatigue Reduces Extension and Flexion Power During Maximal Cycling. Front Sports Act Living 2022; 3:797288. [PMID: 35072064 PMCID: PMC8777021 DOI: 10.3389/fspor.2021.797288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To investigate how quadriceps muscle fatigue affects power production over the extension and flexion phases and muscle activation during maximal cycling. Methods: Ten participants performed 10-s maximal cycling efforts without fatigue and after 120 bilateral maximal concentric contractions of the quadriceps muscles. Extension power, flexion power and electromyographic (EMG) activity were compared between maximal cycling trials. We also investigated the associations between changes in quadriceps force during isometric maximal voluntary contractions (IMVC) and power output (flexion and extension) during maximal cycling, in addition to inter-individual variability in muscle activation and pedal force profiles. Results: Quadriceps IMVC (-52 ± 21%, P = 0.002), voluntary activation (-24 ± 14%, P < 0.001) and resting twitch amplitude (-45 ± 19%, P = 0.002) were reduced following the fatiguing task, whereas vastus lateralis (P = 0.58) and vastus medialis (P = 0.15) M-wave amplitudes were unchanged. The reductions in extension power (-15 ± 8%, P < 0.001) and flexion power (-24 ± 18%, P < 0.001) recorded during maximal cycling with fatigue of the quadriceps were dissociated from the decreases in quadriceps IMVC. Peak EMG decreased across all muscles while inter-individual variability in pedal force and EMG profiles increased during maximal cycling with quadriceps fatigue. Conclusion: Quadriceps fatigue induced by voluntary contractions led to reduced activation of all lower limb muscles, increased inter-individual variability and decreased power production during maximal cycling. Interestingly, power production was further reduced over the flexion phase (24%) than the extension phase (15%), likely due to larger levels of peripheral fatigue developed in RF muscle and/or a higher contribution of the quadriceps muscle to flexion power production compared to extension power during maximal cycling.
Collapse
Affiliation(s)
- Steven J. O'Bryan
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
| | - Janet L. Taylor
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Jessica M. D'Amico
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - David M. Rouffet
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Health and Sport Sciences, University of Louisville, Louisville, KY, United States
| |
Collapse
|
5
|
Krüger RL, Aboodarda SJ, Jaimes LM, Samozino P, Millet GY. Cycling performed on an innovative ergometer at different intensities-durations in men: neuromuscular fatigue and recovery kinetics. Appl Physiol Nutr Metab 2019; 44:1320-1328. [PMID: 31082324 DOI: 10.1139/apnm-2018-0858] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of studies have routinely measured neuromuscular (NM) fatigue with a delay (∼1-3 min) after cycling exercises. This is problematic since NM fatigue can massively recover within the first 1-2 min after exercise. This study investigated the etiology of knee extensors (KE) NM fatigue and recovery kinetics in response to cycling exercises by assessing NM function as early as 10 s following cycling and up to 8 min of recovery. Ten young males performed different cycling exercises on different days: a Wingate (WING), a 10-min task at severe-intensity (SEV), and a 90-min task at moderate-intensity (MOD). Electrically evoked and isometric maximal voluntary contractions (IMVC) of KE were assessed before, after, and during recovery. SEV induced the highest decrease in IMVC. Peak twitch (Pt) was more reduced in WING and SEV than in MOD (p < 0.001), whereas voluntary activation decreased more after MOD than WING (p = 0.043). Regarding Pt and the ratio between low- and high-frequency doublet (i.e., low-frequency fatigue), recovery was faster for WING, whereas IMVC and high-frequency doublet recovered slower during MOD (p < 0.05). Our results confirm that peripheral fatigue is greater after WING and SEV, while central fatigue is greater following MOD. Peripheral fatigue can substantially recover within minutes after a supramaximal exercise while NM function recovered slower after prolonged, moderate-intensity exercise. This study provides an accurate estimation of NM fatigue and recovery kinetics because of dynamic exercise with large muscle mass by significantly shortening the delay for postexercise measurements.
Collapse
Affiliation(s)
- Renata L Krüger
- The Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Saied Jalal Aboodarda
- The Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Libia Marcela Jaimes
- The Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Pierre Samozino
- The University of Savoie Mont Blanc, Inter-university Laboratory of Human Movement Sciences, EA 7424, F-73000 Chambéry, France
| | - Guillaume Y Millet
- The Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
6
|
Krüger RL, Aboodarda SJ, Jaimes LM, MacIntosh BR, Samozino P, Millet GY. Fatigue and recovery measured with dynamic properties versus isometric force: effects of exercise intensity. ACTA ACUST UNITED AC 2019; 222:jeb.197483. [PMID: 30890621 DOI: 10.1242/jeb.197483] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/13/2019] [Indexed: 11/20/2022]
Abstract
Although fatigue can be defined as an exercise-related decrease in maximal power or isometric force, most studies have assessed only isometric force. The main purpose of this experiment was to compare dynamic measures of fatigue [maximal torque (T max), maximal velocity (V max) and maximal power (P max)] with measures associated with maximal isometric force [isometric maximal voluntary contraction (IMVC) and maximal rate of force development (MRFD)] 10 s after different fatiguing exercises and during the recovery period (1-8 min after). Ten young men completed six experimental sessions (3 fatiguing exercises×2 types of fatigue measurements). The fatiguing exercises were: 30 s all-out intensity (AI), 10 min at severe intensity (SI) and 90 min at moderate intensity (MI). Relative P max decreased more than IMVC after AI exercise (P=0.005) while the opposite was found after SI (P=0.005) and MI tasks (P<0.001). There was no difference between the decrease in IMVC and T max after the AI exercise, but IMVC decreased more than T max immediately following and during the recovery from the SI (P=0.042) and MI exercises (P<0.001). Depression of MRFD was greater than V max after all fatiguing exercises and during recovery (all P<0.05). Despite the general definition of fatigue, isometric assessment of fatigue is not interchangeable with dynamic assessment following dynamic exercises with large muscle mass of different intensities, i.e. the results from isometric function cannot be used to estimate dynamic function and vice versa. This implies different physiological mechanisms for the various measures of fatigue.
Collapse
Affiliation(s)
- Renata L Krüger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Saied Jalal Aboodarda
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Libia Marcela Jaimes
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Pierre Samozino
- Univ Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-73000 Chambéry, France
| | - Guillaume Y Millet
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| |
Collapse
|