1
|
Poulios A, Papanikolaou K, Draganidis D, Tsimeas P, Chatzinikolaou A, Tsiokanos A, Jamurtas AZ, Fatouros IG. The Effects of Antioxidant Supplementation on Soccer Performance and Recovery: A Critical Review of the Available Evidence. Nutrients 2024; 16:3803. [PMID: 39599590 PMCID: PMC11597853 DOI: 10.3390/nu16223803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background Soccer is linked to an acute inflammatory response and the release of reactive oxygen species (ROS). Antioxidant supplements have shown promising effects in reducing muscle damage and oxidative stress and enhancing the recovery process after eccentric exercise. This critical review highlights the influence of antioxidant supplements on performance and recovery following soccer-related activity, training, or competition. Methods: English-language publications from the main databases that examine how antioxidant-based nutrition and supplements affect the recovery process before, during, and after soccer practice or competition were used. Results:Coenzyme Q10 (CoQ10), astaxanthin (Asx), red orange juice (ROJS), L-carnitine (LC), N-acetyl cysteine (NAC), beetroot (BET), turmeric root, and tangeretin reduce muscle damage (creatine kinase, myoglobin, cortisol, lactate dehudrogenase, muscle soreness). Tangeretin, docosahexaenoic acid (DHA), turmeric root, and aronia melanocarpa restrict inflammation (leukocytes, prostalagdin E2, C-reactive protein, IL-6 and 10). Q10, DHA, Asx, tangeretin, lippia citriodora, quercetin, allopurinol, turmeric root, ROJS, aronia melanocarpa, vitamins C-E, green tea (GTE), and sour tea (STE) reduce oxidative stress (malondialdehude, glutathione, total antioxidant capacity, superoxide dismutases, protein carbonyls, ascorbate, glutathione peroxidase, and paraoxonase 1). BET and NAC reinforce performance (endurance, jump, speed, strength). Conclusions: Further research is needed to determine the main mechanism and the acute and long-term impacts of antioxidant supplements in soccer.
Collapse
Affiliation(s)
- Athanasios Poulios
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| | - Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| | - Athanasios Chatzinikolaou
- Department of Physical Education and Sport Science, Democritus University of Thrace, 691 00 Komotini, Greece;
| | - Athanasios Tsiokanos
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| |
Collapse
|
2
|
Deli CK, Fatouros IG, Poulios A, Liakou CA, Draganidis D, Papanikolaou K, Rosvoglou A, Gatsas A, Georgakouli K, Tsimeas P, Jamurtas AZ. Gut Microbiota in the Progression of Type 2 Diabetes and the Potential Role of Exercise: A Critical Review. Life (Basel) 2024; 14:1016. [PMID: 39202758 PMCID: PMC11355287 DOI: 10.3390/life14081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Type 2 diabetes (T2D) is the predominant metabolic epidemic posing a major threat to global health. Growing evidence indicates that gut microbiota (GM) may critically influence the progression from normal glucose tolerance, to pre-diabetes, to T2D. On the other hand, regular exercise contributes to the prevention and/or treatment of the disease, and evidence suggests that a possible way regular exercise favorably affects T2D is by altering GM composition toward health-promoting bacteria. However, research regarding this potential effect of exercise-induced changes of GM on T2D and the associated mechanisms through which these effects are accomplished is limited. This review presents current data regarding the association of GM composition and T2D and the possible critical GM differentiation in the progression from normal glucose, to pre-diabetes, to T2D. Additionally, potential mechanisms through which GM may affect T2D are presented. The effect of exercise on GM composition and function on T2D progression is also discussed.
Collapse
Affiliation(s)
- Chariklia K. Deli
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Christina A. Liakou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Anastasia Rosvoglou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Gatsas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Kalliopi Georgakouli
- Department of Dietetics and Nutrition, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece;
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| |
Collapse
|
3
|
Carbohydrates and Endurance Exercise: A Narrative Review of a Food First Approach. Nutrients 2023; 15:nu15061367. [PMID: 36986096 PMCID: PMC10054587 DOI: 10.3390/nu15061367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Carbohydrate (CHO) supplements such as bars, gels, drinks and powders have become ubiquitous as effective evidence-based CHO sources that improve endurance exercise performance. However, athletes are increasingly turning to more cost-effective ‘food-first’ approaches for CHO ingestion to improve exercise performance. Mixed CHO foods including cooked lentils, oats, honey, raisins, rice, and potatoes are all effective pre-exercise CHO food sources. Caution is advised when selecting some of these foods as a primary CHO source, as some athletes may be prone to gastrointestinal discomfort—especially regarding those foods where the quantities required for recommended CHO intake may be voluminous (e.g., potatoes). Palatability may be another barrier to the ingestion of some of these CHO-rich foods. Although most of these CHO-rich foods appear effective for exercise performance or recovery when consumed pre- and post-exercise, not all are viable to ingest during exercise due to difficulties in the quantities required, transport, and/or gastrointestinal discomfort. Raisins, bananas and honey may be particularly useful CHO foods for consumption during exercise, as they are easily transportable. Athletes should trial CHO food sources before, during and/or following training before implementation during competition.
Collapse
|
4
|
Skeletal muscle and erythrocyte redox status is associated with dietary cysteine intake and physical fitness in healthy young physically active men. Eur J Nutr 2023; 62:1767-1782. [PMID: 36828945 DOI: 10.1007/s00394-023-03102-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
PURPOSE To investigate the association between redox status in erythrocytes and skeletal muscle with dietary nutrient intake and markers of physical fitness and habitual physical activity (PA). METHODS Forty-five young physically active men were assessed for body composition, dietary nutrient intake, muscle strength, cardiorespiratory capacity and habitual PA. Blood and muscle samples were collected to estimate selected redox biomarkers. Partial correlation analysis was used to evaluate the independent relationship of each factor with redox biomarkers. RESULTS Dietary cysteine intake was positively correlated (p < 0.001) with both erythrocyte (r = 0.697) and muscle GSH (0.654, p < 0.001), erythrocyte reduced/oxidized glutathione ratio (GSH/GSSG) (r = 0.530, p = 0.001) and glutathione reductase (GR) activity (r = 0.352, p = 0.030) and inversely correlated with erythrocyte protein carbonyls (PC) levels (r = - 0.325; p = 0.046). Knee extensors eccentric peak torque was positively correlated with GR activity (r = 0.355; p = 0.031) while, one-repetition maximum in back squat exercise was positively correlated with erythrocyte GSH/GSSG ratio (r = 0.401; p = 0.014) and inversely correlated with erythrocyte GSSG and PC (r = - 0.441, p = 0.006; r = - 0.413, p = 0.011 respectively). Glutathione peroxidase (GPx) activity was positively correlated with step count (r = 0.520; p < 0.001), light (r = 0.406; p = 0.008), moderate (r = 0.417; p = 0.006), moderate-to-vigorous (r = 0.475; p = 0.001), vigorous (r = 0.352; p = 0.022) and very vigorous (r = 0.326; p = 0.035) PA. Muscle GSSG inversely correlated with light PA (r = - 0.353; p = 0.022). CONCLUSION These results indicate that dietary cysteine intake may be a critical element for the regulation of glutathione metabolism and redox status in two different tissues pinpointing the independent significance of cysteine for optimal redox regulation. Musculoskeletal fitness and PA levels may be predictors of skeletal muscle, but not erythrocyte, antioxidant capacity. TRIAL REGISTRATION Registry: ClinicalTrials.gov, identifier: NCT03711838, date of registration: October 19, 2018.
Collapse
|
5
|
Ruan L, Wang G, Qing Lv Z, Li S, Liu Q, Ren Y, Zhang Q, Lv X, Wu R, Ji Z. The effect of varied exercise intensity on antioxidant function, aortic endothelial function, and serum lipids in rats with non-alcoholic fatty liver disease. INVESTIGACIÓN CLÍNICA 2022. [DOI: 10.54817/ic.v63n4a01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study aimed to compare the effects of diet and exercise of different intensities on antioxidant function, aortic endothelial cell function and serum lipids in NAFLD (nonalcoholic fatty liver disease) rats. Fifty Sprague-Dawley (SD) rats (180-220g) were randomly divided into two experimental groups and fed either a standard rodent chow diet (CON; n=10) or a high-fat diet (HFD; n=40). After 16 weeks, the animals that received the HFD were randomly separated into a high-fat control group (HFC; n=10) or three ex-ercise training groups: HFD and low-intensity exercise (LE; n=10), HFD and moderate-intensity exercise (ME; n=10), and HFD and incremental intensity exercise (IE; n=10). These experimental rats keep sedentary or trained for the next six weeks. A detection kit was used to detect nitric oxide synthase (NOs), nitric oxide (NO), malondialdehyde (MDA) and other markers of aor-tic oxidative stress. The expression levels of endothelial nitric oxide synthase (e-NOS) and endothelin-1 (ET-1) were detected by immunohistochemistry. TC, TG, and other lipid metabolism parameters were detected by an auto-matic analyzer. Exercise with different intensities could improve lipid me-tabolism, enhance antioxidant function, reduce MDA (P<0.01), increase NO (P<0.01), and improve the expression of e-NOS and ET-1 (P<0.01) protein levels in NAFLD rats. Decreased blood lipids were exhibited in all exercise groups. Notably, the moderate-intensity exercise demonstrated more effecton increasing glutathione (GSH) contents (P<0.01) and decreased the ex-pression of ET-1protein levels (P<0.01). The results showed that exercise at different intensities improved lipid metabolism and enhanced anti-oxidation function. Moderate exercise could improve the function of aortic endothelial cells.
Collapse
Affiliation(s)
- Ling Ruan
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Guanghua Wang
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Zhen Qing Lv
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Shoubang Li
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Qin Liu
- College of Physical Education, Ankang University, Ankang, Shaanxi, China
| | - Yiling Ren
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Quancheng Zhang
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Xianli Lv
- College of Physical Education, Ankang University, Ankang, Shaanxi, China
| | - Rongping Wu
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Zhan Ji
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Mediterranean Raisins/Currants as Traditional Superfoods: Processing, Health Benefits, Food Applications and Future Trends within the Bio-Economy Era. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review elaborates on the significance of Mediterranean raisins, focusing particularly on indigenous Greek varieties (e.g., Zante currants) as a previously overlooked traditional food, currently brought on the spotlight, resulting from the increased consumers’ awareness to improve wellness through diet modification. Recent studies on the effect of processing steps on final quality, along with findings on the potential health benefits raisins and currants elicit, are also presented. The development of novel functional food products to further exploit the nutritional value and the bioactive compounds of raisins is evidenced in view of indicating potential food industry applications. Moreover, valorization options of waste and by-product streams obtained from processing facilities are also proposed. Conclusively, raisins and currants should be further enhanced and incorporated in a balanced diet regime through the inclusion in novel foods formulation. Evidently, both the processing of the onset material and side-streams management, are essential to ensure sustainability. Hence, the article also highlights integrated biorefinery approaches, targeting the production of high-value added products that could be re-introduced in the food supply chain and conform with the pillars of bio-economy.
Collapse
|