1
|
Schampheleer E, Roelands B. Mental Fatigue in Sport-From Impaired Performance to Increased Injury Risk. Int J Sports Physiol Perform 2024; 19:1158-1166. [PMID: 39122241 DOI: 10.1123/ijspp.2023-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 08/12/2024]
Abstract
The literature describing the effects of mental fatigue (MF) has grown tremendously. This is accompanied by identification of a host of performance-determining parameters affected by MF. MF results from prolonged cognitive effort and predominantly affects physical, technical, tactical, and perceptual-cognitive dimensions of sport, while physiological parameters (eg, heart rate, lactate) and physical aspects of maximal and supramaximal efforts are predominantly unaffected. The aim of this paper was to provide an overview of the parameters described in the literature as influenced by MF. By identifying the different parameters, we not only see how they affect the performance of athletes but also raise concerns about the potentially increased injury risk due to MF. Preliminary evidence suggests that subsequent disturbances in balance, motor skills, and decision-making processes could potentially increase the vulnerability to injury. An abundance of lab-based studies looked into the effects of MF on performance; however, many questions remain about the mechanisms of origin and neurophysiological causes of MF, and only small steps have been taken to translate this knowledge into practice. Thus, there is a need for more research into the underlying mechanisms of MF and the role of the brain, as well as more applied research with a high ecological validity that also takes into account the potential increased risk of injury due to MF.
Collapse
Affiliation(s)
- Emilie Schampheleer
- Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Roelands
- Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
De Wachter J, Roose M, Proost M, Habay J, Verstraelen M, De Bock S, De Pauw K, Meeusen R, Van Cutsem J, Roelands B. Prefrontal cortex oxygenation during a mentally fatiguing task in normoxia and hypoxia. Exp Brain Res 2024; 242:1807-1819. [PMID: 38839618 PMCID: PMC11208267 DOI: 10.1007/s00221-024-06867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Mental fatigue (MF) and hypoxia impair cognitive performance through changes in brain hemodynamics. We want to elucidate the role of prefrontal cortex (PFC)-oxygenation in MF. Twelve participants (22.9 ± 3.5 years) completed four experimental trials, (1) MF in (normobaric) hypoxia (MF_HYP) (3.800 m; 13.5%O2), (2) MF in normoxia (MF_NOR) (98 m; 21.0%O2), (3) Control task in HYP (CON_HYP), (4) Control in NOR (CON_NOR). Participants performed a 2-back task, Digit Symbol Substitution test and Psychomotor Vigilance task before and after a 60-min Stroop task or an emotionally neutral documentary. Brain oxygenation was measured through functional Near Infrared Spectroscopy. Subjective feelings of MF and physiological measures (heart rate, oxygen saturation, blood glucose and hemoglobin) were recorded. The Stroop task resulted in increased subjective feelings of MF compared to watching the documentary. 2-back accuracy was lower post task compared to pre task in MF_NOR and CON_NOR, while no differences were found in the other cognitive tasks. The fraction of inspired oxygen did not impact feelings of MF. Although performing the Stroop resulted in higher subjective feelings of MF, hypoxia had no effect on the severity of self-reported MF. Additionally, this study could not provide evidence for a role of oxygenation of the PFC in the build-up of MF.
Collapse
Affiliation(s)
- Jonas De Wachter
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Manon Roose
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Radiology, UZ Brussel, Brussels, Belgium
| | - Matthias Proost
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jelle Habay
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Research Foundation Flanders (FWO), Brussels, Belgium
| | - Matthias Verstraelen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sander De Bock
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jeroen Van Cutsem
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
| | - Bart Roelands
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium.
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
3
|
Holgado D, Mesquida C, Román-Caballero R. Assessing the Evidential Value of Mental Fatigue and Exercise Research. Sports Med 2023; 53:2293-2307. [PMID: 37682411 PMCID: PMC10687172 DOI: 10.1007/s40279-023-01926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
It has often been reported that mental exertion, presumably leading to mental fatigue, can negatively affect exercise performance; however, recent findings have questioned the strength of the effect. To further complicate this issue, an overlooked problem might be the presence of publication bias in studies using underpowered designs, which is known to inflate false positive report probability and effect size estimates. Altogether, the presence of bias is likely to reduce the evidential value of the published literature on this topic, although it is unknown to what extent. The purpose of the current work was to assess the evidential value of studies published to date on the effect of mental exertion on exercise performance by assessing the presence of publication bias and the observed statistical power achieved by these studies. A traditional meta-analysis revealed a Cohen's dz effect size of - 0.54, 95% CI [- 0.68, - 0.40], p < .001. However, when we applied methods for estimating and correcting for publication bias (based on funnel plot asymmetry and observed p-values), we found that the bias-corrected effect size became negligible with most of publication-bias methods and decreased to - 0.36 in the more optimistic of all the scenarios. A robust Bayesian meta-analysis found strong evidence in favor of publication bias, BFpb > 1000, and inconclusive evidence in favor of the effect, adjusted dz = 0.01, 95% CrI [- 0.46, 0.37], BF10 = 0.90. Furthermore, the median observed statistical power assuming the unadjusted meta-analytic effect size (i.e., - 0.54) as the true effect size was 39% (min = 19%, max = 96%), indicating that, on average, these studies only had a 39% chance of observing a significant result if the true effect was Cohen's dz = - 0.54. If the more optimistic adjusted effect size (- 0.36) was assumed as the true effect, the median statistical power was just 20%. We conclude that the current literature is a useful case study for illustrating the dangers of conducting underpowered studies to detect the effect size of interest.
Collapse
Affiliation(s)
- Darías Holgado
- Department of Experimental Psychology, and Mind, Brain and Behavior Research Center, University of Granada, Granada, Spain.
- Institute of Sport Sciences, University of Lausanne, Quartier UNIL-Centre, Bâtiment Synathlon, Lausanne, Switzerland.
| | - Cristian Mesquida
- Centre of Applied Science for Health, Technological University Dublin, Tallaght, Ireland
| | - Rafael Román-Caballero
- Department of Experimental Psychology, and Mind, Brain and Behavior Research Center, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Banaei P, Tadibi V, Amiri E, Machado DGDS. Concomitant dual-site tDCS and dark chocolate improve cognitive and endurance performance following cognitive effort under hypoxia: a randomized controlled trial. Sci Rep 2023; 13:16473. [PMID: 37777571 PMCID: PMC10542360 DOI: 10.1038/s41598-023-43568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Ten male cyclists were randomized into four experimental conditions in this randomized, cross-over, double-blind, and sham-controlled study to test the combined effect of acute dark chocolate (DC) ingestion and anodal concurrent dual-site transcranial direct current stimulation (a-tDCS) targeting M1 and left DLPFC on cognitive and whole-body endurance performance in hypoxia after performing a cognitive task. Two hours before the sessions, chocolate was consumed. After arriving at the lab, participants completed an incongruent Stroop task for 30 min in hypoxia (O2 = 13%) to induce mental fatigue, followed by 20 min of tDCS (2 mA) in hypoxia. Then, in hypoxia, they performed a time-to-exhaustion task (TTE) while measuring physiological and psychophysiological responses. Cognitive performance was measured at baseline, after the Stroop task, and during and after TTE. TTE in 'DC + a-tDCS' was significantly longer than in 'white chocolate (WC) + a-tDCS' and WC + sham-tDCS'. The vastus medialis muscle electromyography amplitude was significantly higher in 'DC + a-tDCS' and 'DC + sham-tDCS' than in 'WC + sh-tDCS'. During and after the TTE, choice reaction time was significantly lower in 'DC + a-tDCS' compared to 'WC + sh-tDCS'. Other physiological or psychophysiological variables showed no significant differences. The concurrent use of acute DC consumption and dual-site a-tDCS might improve cognitive and endurance performance in hypoxia.
Collapse
Affiliation(s)
- Parisa Banaei
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran
| | - Vahid Tadibi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran.
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| |
Collapse
|
5
|
Habay J, Uylenbroeck R, Van Droogenbroeck R, De Wachter J, Proost M, Tassignon B, De Pauw K, Meeusen R, Pattyn N, Van Cutsem J, Roelands B. Interindividual Variability in Mental Fatigue-Related Impairments in Endurance Performance: A Systematic Review and Multiple Meta-regression. SPORTS MEDICINE - OPEN 2023; 9:14. [PMID: 36808018 PMCID: PMC9941412 DOI: 10.1186/s40798-023-00559-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND The negative effect of mental fatigue (MF) on physical performance has recently been questioned. One reason behind this could lie in the interindividual differences in MF-susceptibility and the individual features influencing them. However, the range of individual differences in mental fatigue-susceptibility is not known, and there is no clear consensus on which individual features could be responsible for these differences. OBJECTIVE To give an overview of interindividual differences in the effects of MF on whole-body endurance performance, and individual features influencing this effect. METHODS The review was registered on the PROSPERO database (CRD42022293242). PubMed, Web of Science, SPORTDiscus and PsycINFO were searched until the 16th of June 2022 for studies detailing the effect of MF on dynamic maximal whole-body endurance performance. Studies needed to include healthy participants, describe at least one individual feature in participant characteristics, and apply at least one manipulation check. The Cochrane crossover risk of bias tool was used to assess risk of bias. The meta-analysis and regression were conducted in R. RESULTS Twenty-eight studies were included, with 23 added to the meta-analysis. Overall risk of bias of the included studies was high, with only three presenting an unclear or low rating. The meta-analysis shows the effect of MF on endurance performance was on average slightly negative (g = - 0.32, [95% CI - 0.46; - 0.18], p < 0.001). The multiple meta-regression showed no significant influences of the included features (i.e. age, sex, body mass index and physical fitness level) on MF-susceptibility. CONCLUSIONS The present review confirmed the negative impact of MF on endurance performance. However, no individual features influencing MF-susceptibility were identified. This can partially be explained by the multiple methodological limitations such as underreporting of participant characteristics, lack of standardization across studies, and the restricted inclusion of potentially relevant variables. Future research should include a rigorous description of multiple different individual features (e.g., performance level, diet, etc.) to further elucidate MF mechanisms.
Collapse
Affiliation(s)
- Jelle Habay
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ,grid.16499.330000 0004 0645 1099Vital Signs and Performance Monitoring Research Unit, LIFE Department, Royal Military Academy, Brussels, Belgium ,grid.434261.60000 0000 8597 7208Research Foundation Flanders (FWO), Brussels, Belgium
| | - Robin Uylenbroeck
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ruben Van Droogenbroeck
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jonas De Wachter
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Matthias Proost
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Bruno Tassignon
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kevin De Pauw
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Romain Meeusen
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nathalie Pattyn
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ,grid.16499.330000 0004 0645 1099Vital Signs and Performance Monitoring Research Unit, LIFE Department, Royal Military Academy, Brussels, Belgium
| | - Jeroen Van Cutsem
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ,grid.16499.330000 0004 0645 1099Vital Signs and Performance Monitoring Research Unit, LIFE Department, Royal Military Academy, Brussels, Belgium
| | - Bart Roelands
- Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. .,BruBotics, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
6
|
McKeown DJ, McNeil CJ, Simmonds MJ, Kavanagh JJ. Post-fatigue ability to activate muscle is compromised across a wide range of torques during acute hypoxic exposure. Eur J Neurosci 2022; 56:4653-4668. [PMID: 35841186 PMCID: PMC9546238 DOI: 10.1111/ejn.15773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/11/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to assess how severe acute hypoxia alters the neural mechanisms of muscle activation across a wide range of torque output in a fatigued muscle. Torque and electromyography responses to transcranial and motor nerve stimulation were collected from 10 participants (27 years ± 5 years, 1 female) following repeated performance of a sustained maximal voluntary contraction that reduced torque to 60% of the pre‐fatigue peak torque. Contractions were performed after 2 h of hypoxic exposure and during a sham intervention. For hypoxia, peripheral blood oxygen saturation was titrated to 80% over a 15‐min period and remained at 80% for 2 h. Maximal voluntary torque, electromyography root mean square, voluntary activation and corticospinal excitability (motor evoked potential area) and inhibition (silent period duration) were then assessed at 100%, 90%, 80%, 70%, 50% and 25% of the target force corresponding to the fatigued maximal voluntary contraction. No hypoxia‐related effects were identified for voluntary activation elicited during motor nerve stimulation. However, during measurements elicited at the level of the motor cortex, voluntary activation was reduced at each torque output considered (P = .002, ηp2 = .829). Hypoxia did not impact the correlative linear relationship between cortical voluntary activation and contraction intensity or the correlative curvilinear relationship between motor nerve voluntary activation and contraction intensity. No other hypoxia‐related effects were identified for other neuromuscular variables. Acute severe hypoxia significantly impairs the ability of the motor cortex to voluntarily activate fatigued muscle across a wide range of torque output.
Collapse
Affiliation(s)
- Daniel J McKeown
- Neural Control of Movement Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Chris J McNeil
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Justin J Kavanagh
- Neural Control of Movement Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
7
|
Guicciardi M, Pazzona R, Manca A, Monni A, Scalas LF, Perra F, Leban B, Roberto S, Mulliri G, Ghiani G, Doneddu A, Crisafulli A. Executive Functions and Mood States in Athletes Performing Exercise Under Hypoxia. Front Psychol 2022; 13:906336. [PMID: 35712141 PMCID: PMC9196732 DOI: 10.3389/fpsyg.2022.906336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia can impair cognitive performance, whereas exercise can enhance it. The effects of hypoxia on cognitive performance during exercise appear to be moderated by exercise duration and intensity and by severity and duration of hypoxia and cognitive task. In normal individuals, exercise under hypoxia can evoke adverse post-exercise mood states, such as tension and fatigue. However, little is known about the effects of hypoxia during exercise in trained athletes. The purpose of this study was to investigate how hypoxia affected executive functions and mood states, assessed, respectively, during and post-exercise and to explore the role of motivation moderators, such as inhibition and activation systems (BIS-BAS). Two different sessions of exercise in normoxia and hypoxia (FiO2 13%), each lasting 18 min, were randomly assigned in a counterbalanced order and administered to seventeen male athletes. During exercise bouts, participants performed a mental task (BST) aimed to produce cognitive interference and suppression. Reaction times and accuracy of responses were recorded. After 5 min, all participants completed two questionnaires assessing mood states (ITAMS) and incidence of symptoms potentially related to hypoxia (AMS-C). The results show that hypoxia impairs cognitive performance in terms of slower reaction times, but a high BAS attenuates this effect. Participants with high BAS show an equivalent cognitive performance under hypoxia and normoxia conditions. No effects were found on mood states. Further research is required to investigate the role of BAS, cognitive abilities, and mood states in prolonged hypoxic conditions.
Collapse
Affiliation(s)
- Marco Guicciardi
- Department of Education, Psychology, Philosophy, Faculty of Humanities, University of Cagliari, Cagliari, Italy
| | - Riccardo Pazzona
- Department of Education, Psychology, Philosophy, Faculty of Humanities, University of Cagliari, Cagliari, Italy
| | - Andrea Manca
- Department of Education, Psychology, Philosophy, Faculty of Humanities, University of Cagliari, Cagliari, Italy
| | - Alessandra Monni
- Department of Education, Psychology, Philosophy, Faculty of Humanities, University of Cagliari, Cagliari, Italy
| | - Laura Francesca Scalas
- Department of Education, Psychology, Philosophy, Faculty of Humanities, University of Cagliari, Cagliari, Italy
| | - Federica Perra
- Department of Education, Psychology, Philosophy, Faculty of Humanities, University of Cagliari, Cagliari, Italy
| | - Bruno Leban
- Department of Mechanical, Chemical and Materials Engineering, Faculty of Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Silvana Roberto
- Sports Physiology Lab, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gabriele Mulliri
- Sports Physiology Lab, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giovanna Ghiani
- Sports Physiology Lab, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Azzurra Doneddu
- Sports Physiology Lab, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Crisafulli
- Sports Physiology Lab, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
O'Keeffe K, Dean J, Hodder S, Lloyd A. Self-Selected Motivational Music Enhances Physical Performance in Normoxia and Hypoxia in Young Healthy Males. Front Psychol 2021; 12:787496. [PMID: 34956012 PMCID: PMC8702523 DOI: 10.3389/fpsyg.2021.787496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Humans exposed to hypoxia are susceptible to physiological and psychological impairment. Music has ergogenic effects through enhancing psychological factors such as mood, emotion, and cognition. This study aimed to investigate music as a tool for mitigating the performance decrements observed in hypoxia. Thirteen males (mean ± SD; 24 ± 4 years) completed one familiarization session and four experimental trials; (1) normoxia (sea level, 0.209 FiO2) and no music; (2) normoxia (0.209 FiO2) with music; (3) normobaric hypoxia (∼3800 m, 0.13 FiO2) and no music; and (4) normobaric hypoxia (0.13 FiO2) with music. Experimental trials were completed at 21°C with 50% relative humidity. Music was self-selected prior to the familiarization session. Each experimental trial included a 15-min time trial on an arm bike, followed by a 60-s isometric maximal voluntary contraction (MVC) of the biceps brachii. Supramaximal nerve stimulation quantified central and peripheral fatigue with voluntary activation (VA%) calculated using the doublet interpolation method. Average power output (W) was reduced with a main effect of hypoxia (p = 0.02) and significantly increased with a main effect of music (p = 0.001). When combined the interaction was additive (p = 0.87). Average MVC force (N) was reduced in hypoxia (p = 0.03) but VA% of the biceps brachii was increased with music (p = 0.02). Music reduced subjective scores of mental effort, breathing discomfort, and arm discomfort in hypoxia (p < 0.001). Music increased maximal physical exertion through enhancing neural drive and diminishing detrimental mental processes, enhancing performance in normoxia (6.3%) and hypoxia (6.4%).
Collapse
Affiliation(s)
- Kate O'Keeffe
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Jacob Dean
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Simon Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Alex Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|