1
|
Collin SHP, Kempner RP, Srivatsan S, Norman KA. Neural codes track prior events in a narrative and predict subsequent memory for details. COMMUNICATIONS PSYCHOLOGY 2025; 3:26. [PMID: 39956878 PMCID: PMC11830764 DOI: 10.1038/s44271-025-00211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Throughout our lives, we learn schemas that specify what types of events to expect in particular contexts and the temporal order in which these events usually occur. Here, our first goal was to investigate how such context-dependent temporal structures are represented in the brain during processing of temporally extended events. To accomplish this, we ran a 2-day fMRI study (N = 40) in which we exposed participants to many unique animated videos of weddings composed of sequences of rituals; each sequence originated from one of two fictional cultures (North and South), where rituals were shared across cultures, but the transition structure between these rituals differed across cultures. The results, obtained using representational similarity analysis, revealed that context-dependent temporal structure is represented in multiple ways in parallel, including distinct neural representations for the culture, for particular sequences, and for past and current events within the sequence. Our second goal was to test the hypothesis that neural schema representations scaffold memory for specific details. In keeping with this hypothesis, we found that the strength of the neural representation of the North/South schema for a particular wedding predicted subsequent episodic memory for the details of that wedding.
Collapse
Affiliation(s)
- Silvy H P Collin
- Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, Netherlands.
| | - Ross P Kempner
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Sunita Srivatsan
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Kenneth A Norman
- Princeton Neuroscience Institute, Princeton University, Princeton, USA.
- Department of Psychology, Princeton University, Princeton, USA.
| |
Collapse
|
2
|
Kewenig VN, Vigliocco G, Skipper JI. When abstract becomes concrete, naturalistic encoding of concepts in the brain. eLife 2024; 13:RP91522. [PMID: 39636743 PMCID: PMC11620750 DOI: 10.7554/elife.91522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Language is acquired and processed in complex and dynamic naturalistic contexts, involving the simultaneous processing of connected speech, faces, bodies, objects, etc. How words and their associated concepts are encoded in the brain during real-world processing is still unknown. Here, the representational structure of concrete and abstract concepts was investigated during movie watching to address the extent to which brain responses dynamically change depending on visual context. First, across contexts, concrete and abstract concepts are shown to encode different experience-based information in separable sets of brain regions. However, these differences are reduced when multimodal context is considered. Specifically, the response profile of abstract words becomes more concrete-like when these are processed in visual scenes highly related to their meaning. Conversely, when the visual context is unrelated to a given concrete word, the activation pattern resembles more that of abstract conceptual processing. These results suggest that while concepts generally encode habitual experiences, the underlying neurobiological organisation is not fixed but depends dynamically on available contextual information.
Collapse
Affiliation(s)
| | | | - Jeremy I Skipper
- Experimental Psychology, University College LondonLondonUnited Kingdom
| |
Collapse
|
3
|
Masís-Obando R, Norman KA, Baldassano C. Schema representations in distinct brain networks support narrative memory during encoding and retrieval. eLife 2022; 11:e70445. [PMID: 35393941 PMCID: PMC8993217 DOI: 10.7554/elife.70445] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Schematic prior knowledge can scaffold the construction of event memories during perception and also provide structured cues to guide memory search during retrieval. We measured the activation of story-specific and schematic representations using fMRI while participants were presented with 16 stories and then recalled each of the narratives, and related these activations to memory for specific story details. We predicted that schema representations in medial prefrontal cortex (mPFC) would be correlated with successful recall of story details. In keeping with this prediction, an anterior mPFC region showed a significant correlation between activation of schema representations at encoding and subsequent behavioral recall performance; however, this mPFC region was not implicated in schema representation during retrieval. More generally, our analyses revealed largely distinct brain networks at encoding and retrieval in which schema activation was related to successful recall. These results provide new insight into when and where event knowledge can support narrative memory.
Collapse
Affiliation(s)
| | - Kenneth A Norman
- Princeton Neuroscience InstitutePrincetonUnited States
- Department of Psychology, Princeton UniversityPrincetonUnited States
| | | |
Collapse
|
4
|
Tan KM, Daitch AL, Pinheiro-Chagas P, Fox KCR, Parvizi J, Lieberman MD. Electrocorticographic evidence of a common neurocognitive sequence for mentalizing about the self and others. Nat Commun 2022; 13:1919. [PMID: 35395826 PMCID: PMC8993891 DOI: 10.1038/s41467-022-29510-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/11/2022] [Indexed: 01/12/2023] Open
Abstract
Neuroimaging studies of mentalizing (i.e., theory of mind) consistently implicate the default mode network (DMN). Nevertheless, the social cognitive functions of individual DMN regions remain unclear, perhaps due to limited spatiotemporal resolution in neuroimaging. Here we use electrocorticography (ECoG) to directly record neuronal population activity while 16 human participants judge the psychological traits of themselves and others. Self- and other-mentalizing recruit near-identical cortical sites in a common spatiotemporal sequence. Activations begin in the visual cortex, followed by temporoparietal DMN regions, then finally in medial prefrontal regions. Moreover, regions with later activations exhibit stronger functional specificity for mentalizing, stronger associations with behavioral responses, and stronger self/other differentiation. Specifically, other-mentalizing evokes slower and longer activations than self-mentalizing across successive DMN regions, implying lengthier processing at higher levels of representation. Our results suggest a common neurocognitive pathway for self- and other-mentalizing that follows a complex spatiotemporal gradient of functional specialization across DMN and beyond.
Collapse
Affiliation(s)
- Kevin M Tan
- Social Cognitive Neuroscience Laboratory, Department of Psychology, University of California, Los Angeles, CA, USA.
| | - Amy L Daitch
- Laboratory of Behavioral and Cognitive Neuroscience, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Pedro Pinheiro-Chagas
- Laboratory of Behavioral and Cognitive Neuroscience, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kieran C R Fox
- Laboratory of Behavioral and Cognitive Neuroscience, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Matthew D Lieberman
- Social Cognitive Neuroscience Laboratory, Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Bromis K, Raykov PP, Wickens L, Roseboom W, Bird CM. The Neural Representation of Events Is Dominated by Elements that Are Most Reliably Present. J Cogn Neurosci 2021; 34:517-531. [PMID: 34942648 DOI: 10.1162/jocn_a_01802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
An episodic memory is specific to an event that occurred at a particular time and place. However, the elements that comprise the event-the location, the people present, and their actions and goals-might be shared with numerous other similar events. Does the brain preferentially represent certain elements of a remembered event? If so, which elements dominate its neural representation: those that are shared across similar events, or the novel elements that define a specific event? We addressed these questions by using a novel experimental paradigm combined with fMRI. Multiple events were created involving conversations between two individuals using the format of a television chat show. Chat show "hosts" occurred repeatedly across multiple events, whereas the "guests" were unique to only one event. Before learning the conversations, participants were scanned while viewing images or names of the (famous) individuals to be used in the study to obtain person-specific activity patterns. After learning all the conversations over a week, participants were scanned for a second time while they recalled each event multiple times. We found that during recall, person-specific activity patterns within the posterior midline network were reinstated for the hosts of the shows but not the guests, and that reinstatement of the hosts was significantly stronger than the reinstatement of the guests. These findings demonstrate that it is the more generic, familiar, and predictable elements of an event that dominate its neural representation compared with the more idiosyncratic, event-defining, elements.
Collapse
|
6
|
Raykov PP, Keidel JL, Oakhill J, Bird CM. Activation of Person Knowledge in Medial Prefrontal Cortex during the Encoding of New Lifelike Events. Cereb Cortex 2021; 31:3494-3505. [PMID: 33866362 PMCID: PMC8355471 DOI: 10.1093/cercor/bhab027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Our knowledge about people can help us predict how they will behave in particular situations and interpret their actions. In this study, we investigated the cognitive and neural effects of person knowledge on the encoding and retrieval of novel life-like events. Healthy human participants learnt about two characters over a week by watching 6 episodes of one of two situation comedies, which were both centered on a young couple. In the scanner, they watched and then silently recalled 20 new scenes from both shows that were all set in unfamiliar locations: 10 from their trained show and 10 from the untrained show. After scanning, participants' recognition memory was better for scenes from the trained show. The functional magnetic resonance imaging (fMRI) patterns of brain activity when watching the videos were reinstated during recall, but this effect was not modulated by training. However, person knowledge boosted the similarity in fMRI patterns of activity in the medial prefrontal cortex (MPFC) when watching the new events involving familiar characters. Our findings identify a role for the MPFC in the representation of schematic person knowledge during the encoding of novel, lifelike events.
Collapse
Affiliation(s)
- Petar P Raykov
- School of Psychology, University of Sussex, Falmer BN1 9QH, UK
| | - James L Keidel
- School of Psychology, University of Sussex, Falmer BN1 9QH, UK
| | - Jane Oakhill
- School of Psychology, University of Sussex, Falmer BN1 9QH, UK
| | - Chris M Bird
- School of Psychology, University of Sussex, Falmer BN1 9QH, UK
| |
Collapse
|
7
|
Integration and differentiation of hippocampal memory traces. Neurosci Biobehav Rev 2020; 118:196-208. [DOI: 10.1016/j.neubiorev.2020.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
|
8
|
Kan IP, Rosenbaum RS, Verfaellie M. Schema processing across the lifespan: From theory to applications. Cogn Neuropsychol 2020; 37:1-7. [PMID: 32106740 DOI: 10.1080/02643294.2020.1736019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Irene P Kan
- Department of Psychological & Brain Sciences, Villanova University, Villanova, PA, USA
| | - R Shayna Rosenbaum
- Department of Psychology, Vision: Science to Applications (VISTA) Program, York University, Toronto, Canada.,Rotman Research Institute, Baycrest, Toronto, Canada
| | - Mieke Verfaellie
- Memory Disorders Research Center, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|