De Domenico P, Gagliardi F, Roncelli F, Snider S, Mortini P. Tumor-infiltrating and circulating B cells mediate local and systemic immunomodulatory mechanisms in Glioblastoma.
J Neurooncol 2025;
172:527-548. [PMID:
40080248 DOI:
10.1007/s11060-025-04989-z]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND
Glioblastoma (GBM) demonstrates extensive immunomodulatory mechanisms that challenge effective therapeutic interventions. These phenomena extend well beyond the tumor microenvironment (TME) and are reflected in the circulating immunophenotype. B lymphocytes (B cells) have received limited attention in GBM studies despite their emerging importance in mediating both local and systemic immune responses. Recent findings highlight the complex regulatory interactions between B cells and other immune cell populations, including tumor-infiltrating macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and other infiltrating lymphocytes (TILs). B cells are believed to hinder the efficacy of modern immunotherapy strategies focusing on T cells.
METHODS
This is a focused review of available evidence regarding B cells in GBM through January 2025.
RESULTS
Peripheral blood reflects a systemically dampened immune response, with sustained lymphopenia, increased plasma cells, and dysfunctional memory B cells. The tumor immune landscape is enriched in cells of B-lineage. Subsets of poorly characterized B regulatory cells (Bregs) populate the TME, developing their phenotype due to their proximity to MDSCs, TAMs, and tumoral cells. The Bregs inhibit CD8+ T activity and may have potential prognostic significance.
CONCLUSION
Understanding the role of B cells, how they are recruited, and their differentiation shifted towards an immunomodulatory role could inform better therapeutic strategies and unleash their full antitumoral potential in GBM.
Collapse