1
|
Hu L, Liu J, Peng J, Li X, Huang Z, Zhang C, Fan S. TREM2 Alleviates Neuroinflammation by Maintaining Cellular Metabolic Homeostasis and Mitophagy Activity During Early Inflammation. Diseases 2025; 13:60. [PMID: 39997067 PMCID: PMC11854088 DOI: 10.3390/diseases13020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
AIMS Inflammation is a pivotal characteristic of neurodegenerative diseases. The triggering receptor expressed on the myeloid cells 2 (TREM2) gene has previously been shown to suppress inflammation by directly inhibiting inflammation-related pathways. Mitochondrial dysfunction has recently emerged as another critical pathological manifestation of neurodegenerative diseases. Although TREM2 is involved in the regulation of cellular energy metabolism and mitochondrial autophagy, its role in the relationship between inflammation and mitochondrial autophagy remains unclear. METHODS In this study, we generated TREM2-overexpressing BV-2 cells and established a neuroinflammatory model with LPS. We compared these cells with wild-type cells in terms of inflammation, metabolism, autophagy, and mitochondria using methods such as RT-qPCR, Western blotting, immunocytochemistry, transmission electron microscopy, and flow cytometry. RESULTS Microglia overexpressing TREM2 exhibited increased resistance to inflammation. Additionally, these cells inhibited the metabolic reprogramming that occurs early in LPS-induced inflammation, reduced ROS release, mitigated mitochondrial damage, maintained a certain level of autophagic activity, and cleared damaged mitochondria. Consequently, they alleviated the inflammation caused by the mitochondrial barrier. CONCLUSIONS ur results suggest that TREM2 can alleviate inflammation by maintaining cellular metabolic homeostasis and mitochondrial autophagy activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650108, China; (L.H.); (J.L.); (J.P.); (X.L.); (Z.H.); (C.Z.)
| |
Collapse
|
2
|
Ren J, Li R, Meng C, Xu Y, Li C. Identification of BCL3 as a biomarker for chondrocyte programmed cell death in osteoarthritis. Int J Exp Pathol 2025; 106:e12522. [PMID: 39676743 PMCID: PMC11731105 DOI: 10.1111/iep.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Osteoarthritis (OA) is a condition that is widely prevalent and causes joint pain and disability, with programmed cell death (PCD) playing a role in its pathogenesis. This study aimed to identify biomarkers associated with PCD in OA and explore their potential roles. Three RNA-sequencing datasets (GSE114007, GSE51588 and GSE220243) related to OA were analysed. Differential expression and weighted gene co-expression network identified key differentially expressed PCD-related genes (DE-PRMGs). Potential biomarkers were identified and validated through receiver operating characteristic (ROC) curves, correlation analyses, gene set enrichment analysis, single-cell expression and RT-qPCR. A total of 45 DE-PRMGs were identified, affecting pathways like TNF signalling and RNA degradation. BCL3, TREM2 and NRP2 were prioritized as potential OA biomarkers, which are associated with ribosome function and immune cell infiltration and potentially linked to PCD. The functional role of one of the molecules identified, BCL3, was explored further using a cell model of inflammation induced chondrocytes. BCL3 was significantly down regulated in OA samples from the public dataset and clinical samples analysed by RT-qPCR. BCL3 overexpression reduced apoptosis in chondrocytes stimulated with inflammatory cytokines. Thus the functional studies highlighted the anti-apoptotic role of BCL3 in chondrocytes and provide new insights into OA pathogenesis with potential for future therapeutic development.
Collapse
Affiliation(s)
- Junxiao Ren
- Yunnan University of Chinese MedicineKunmingYunnanChina
| | - Rui Li
- Yunnan University of Chinese MedicineKunmingYunnanChina
| | - Chen Meng
- Kunming Medical UniversityKunmingYunnanChina
| | - Yongqing Xu
- The 920th Hospital of Joint Logistics SupportForce of PLAKunmingYunnanChina
| | - Chuan Li
- Yunnan University of Chinese MedicineKunmingYunnanChina
- Engineering Laboratory of Peptides of Chinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
3
|
Jiang S, Cai G, Yang Z, Shi H, Zeng H, Ye Q, Hu Z, Wang Z. Biomimetic Nanovesicles as a Dual Gene Delivery System for the Synergistic Gene Therapy of Alzheimer's Disease. ACS NANO 2024; 18:11753-11768. [PMID: 38649866 DOI: 10.1021/acsnano.3c13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The association between dysfunctional microglia and amyloid-β (Aβ) is a fundamental pathological event and increases the speed of Alzheimer's disease (AD). Additionally, the pathogenesis of AD is intricate and a single drug may not be enough to achieve a satisfactory therapeutic outcome. Herein, we reported a facile and effective gene therapy strategy for the modulation of microglia function and intervention of Aβ anabolism by ROS-responsive biomimetic exosome-liposome hybrid nanovesicles (designated as TSEL). The biomimetic nanovesicles codelivery β-site amyloid precursor protein cleaving enzyme-1 (BACE1) siRNA (siBACE1) and TREM2 plasmid (pTREM2) gene drug efficiently penetrate the blood-brain barrier and enhance the drug accumulation at AD lesions with the help of exosomes homing ability and angiopep-2 peptides. Specifically, an upregulation of TREM2 expression can reprogram microglia from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype while also restoring its capacity to phagocytose Aβ and its nerve repair function. In addition, siRNA reduces the production of Aβ plaques at the source by knocking out the BACE1 gene, which is expected to further enhance the therapeutic effect of AD. The in vivo study suggests that TSEL through the synergistic effect of two gene drugs can ameliorate APP/PS1 mice cognitive impairment by regulating the activated microglial phenotype, reducing the accumulation of Aβ, and preventing the retriggering of neuroinflammation. This strategy employs biomimetic nanovesicles for the delivery of dual nucleic acids, achieving synergistic gene therapy for AD, thus offering more options for the treatment of AD.
Collapse
Affiliation(s)
- Sujun Jiang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Guoen Cai
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Zhimin Yang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haoyuan Shi
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Huajie Zeng
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Qinyong Ye
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Zhiyuan Hu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|