1
|
Wang J, Wang H, Zou F, Gu J, Deng S, Cao Y, Cai K. The Role of Inorganic Nanomaterials in Overcoming Challenges in Colorectal Cancer Diagnosis and Therapy. Pharmaceutics 2025; 17:409. [PMID: 40284405 PMCID: PMC12030334 DOI: 10.3390/pharmaceutics17040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Colorectal cancer poses a significant threat to human health due to its high aggressiveness and poor prognosis. Key factors impacting patient outcomes include post-surgical recurrence, chemotherapeutic drug resistance, and insensitivity to immunotherapy. Consequently, early diagnosis and the development of effective targeted therapies are essential for improving prevention and treatment strategies. Inorganic nanomaterials have gained prominence in the diagnosis and treatment of colorectal cancer owing to their unique size, advantageous properties, and high modifiability. Various types of inorganic nanomaterials-such as metal-based, metal oxide, quantum dots, magnetic nanoparticles, carbon-based, and rare-earth nanomaterials-have demonstrated significant potential in enhancing multimodal imaging, drug delivery, and synergistic therapies. These advancements underscore their critical role in improving therapeutic outcomes. This review highlights the properties and development of inorganic nanomaterials, summarizes their recent applications and progress in colorectal cancer diagnosis and treatment, and discusses the challenges in translating these materials into clinical use. It aims to provide valuable insights for future research and the clinical application of inorganic nanomaterials in colorectal cancer management.
Collapse
Affiliation(s)
- Jun Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (H.W.); (F.Z.)
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Hanwenchen Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (H.W.); (F.Z.)
| | - Falong Zou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (H.W.); (F.Z.)
| | - Junnan Gu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Shenghe Deng
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Yinghao Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (H.W.); (F.Z.)
| |
Collapse
|
2
|
Caselli L, Mendozza M, Muzzi B, Toti A, Montis C, Mello T, Di Cesare Mannelli L, Ghelardini C, Sangregorio C, Berti D. Lipid Cubic Mesophases Combined with Superparamagnetic Iron Oxide Nanoparticles: A Hybrid Multifunctional Platform with Tunable Magnetic Properties for Nanomedical Applications. Int J Mol Sci 2021; 22:9268. [PMID: 34502176 PMCID: PMC8430948 DOI: 10.3390/ijms22179268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Hybrid materials composed of superparamagnetic iron oxide nanoparticles (SPIONs) and lipid self-assemblies possess considerable applicative potential in the biomedical field, specifically, for drug/nutrient delivery. Recently, we showed that SPIONs-doped lipid cubic liquid crystals undergo a cubic-to-hexagonal phase transition under the action of temperature or of an alternating magnetic field (AMF). This transition triggers the release of drugs embedded in the lipid scaffold or in the water channels. In this contribution, we address this phenomenon in depth, to fully elucidate the structural details and optimize the design of hybrid multifunctional carriers for drug delivery. Combining small-angle X-ray scattering (SAXS) with a magnetic characterization, we find that, in bulk lipid cubic phases, the cubic-to-hexagonal transition determines the magnetic response of SPIONs. We then extend the investigation from bulk liquid-crystalline phases to colloidal dispersions, i.e., to lipid/SPIONs nanoparticles with cubic internal structure ("magnetocubosomes"). Through Synchrotron SAXS, we monitor the structural response of magnetocubosomes while exposed to an AMF: the magnetic energy, converted into heat by SPIONs, activates the cubic-to-hexagonal transition, and can thus be used as a remote stimulus to spike drug release "on-demand". In addition, we show that the AMF-induced phase transition in magnetocubosomes steers the realignment of SPIONs into linear string assemblies and connect this effect with the change in their magnetic properties, observed at the bulk level. Finally, we assess the internalization ability and cytotoxicity of magnetocubosomes in vitro on HT29 adenocarcinoma cancer cells, in order to test the applicability of these smart carriers in drug delivery applications.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; (L.C.); (M.M.); (B.M.); (C.M.); (C.S.)
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| | - Marco Mendozza
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; (L.C.); (M.M.); (B.M.); (C.M.); (C.S.)
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| | - Beatrice Muzzi
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; (L.C.); (M.M.); (B.M.); (C.M.); (C.S.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 1240, I-53100 Siena, Italy
- ICCOM-CNR, I-50019 Sesto Fiorentino, Florence, Italy
- INSTM, I-50019 Sesto Fiorentino, Florence, Italy
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (A.T.); (L.D.C.M.); (C.G.)
| | - Costanza Montis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; (L.C.); (M.M.); (B.M.); (C.M.); (C.S.)
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| | - Tommaso Mello
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, 50139 Florence, Italy;
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (A.T.); (L.D.C.M.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (A.T.); (L.D.C.M.); (C.G.)
| | - Claudio Sangregorio
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; (L.C.); (M.M.); (B.M.); (C.M.); (C.S.)
- ICCOM-CNR, I-50019 Sesto Fiorentino, Florence, Italy
- INSTM, I-50019 Sesto Fiorentino, Florence, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; (L.C.); (M.M.); (B.M.); (C.M.); (C.S.)
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
3
|
Iglesias CAM, de Araújo JCR, Xavier J, Anders RL, de Araújo JM, da Silva RB, Soares JM, Brito EL, Streck L, Fonseca JLC, Plá Cid CC, Gamino M, Silva EF, Chesman C, Correa MA, de Medeiros SN, Bohn F. Magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process. Sci Rep 2021; 11:11867. [PMID: 34088933 PMCID: PMC8178398 DOI: 10.1038/s41598-021-91334-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
We investigate the magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process through the calorimetric method. Specifically, we propose a theoretical approach to magnetic hyperthermia from a thermodynamic point of view. To test the robustness of the approach, we perform hyperthermia experiments and analyse the thermal behavior of magnetite and magnesium ferrite magnetic nanoparticles dispersed in water submitted to an alternating magnetic field. From our findings, besides estimating the specific loss power value from a non-adiabatic and radiating process, thus enhancing the accuracy in the determination of this quantity, we provide physical meaning to a parameter found in literature that still remained not fully understood, the effective thermal conductance, and bring to light how it can be obtained from experiment. In addition, we show our approach brings a correction to the estimated experimental results for specific loss power and effective thermal conductance, thus demonstrating the importance of the heat loss rate due to the thermal radiation in magnetic hyperthermia.
Collapse
Affiliation(s)
- C A M Iglesias
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - J C R de Araújo
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - J Xavier
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - R L Anders
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - J M de Araújo
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - R B da Silva
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - J M Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-090, Mossoró, RN, Brazil
| | - E L Brito
- POLYMAT, Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018, Donostia-San Sebastián, Spain.,Instituto de Química, Universidade Federal do Rio Grande do Norte, 59078-970, Natal, RN, Brazil
| | - L Streck
- Instituto de Química, Universidade Federal do Rio Grande do Norte, 59078-970, Natal, RN, Brazil.,Curso de Farmácia, Faculdade Maurício de Nassau, 59080-400, Natal, RN, Brazil
| | - J L C Fonseca
- Instituto de Química, Universidade Federal do Rio Grande do Norte, 59078-970, Natal, RN, Brazil
| | - C C Plá Cid
- Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - M Gamino
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - E F Silva
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - C Chesman
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M A Correa
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - S N de Medeiros
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - F Bohn
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil.
| |
Collapse
|
4
|
Dahaghin A, Emadiyanrazavi S, Haghpanahi M, Salimibani M, Bahreinizad H, Eivazzadeh-Keihan R, Maleki A. A comparative study on the effects of increase in injection sites on the magnetic nanoparticles hyperthermia. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Khan FA, Albalawi R, Pottoo FH. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med Res Rev 2021; 42:227-258. [PMID: 33891325 DOI: 10.1002/med.21809] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Colon cancer is an adenocarcinoma, which subsequently develops into malignant tumors, if not treated properly. The current colon cancer therapy mainly revolves around chemotherapy, radiotherapy and surgery, but the search continues for more effective interventions. With the advancement of nanoparticles (NPs), it is now possible to diagnose and treat colon cancers with different types, shapes, and sizes of NPs. Nanoformulations such as quantum dots, iron oxide, polymeric NPs, dendrimers, polypeptides, gold NPs, silver NPs, platinum NPs, and cerium oxide have been either extensively used alone or in combination with other nanomaterials or drugs in colon cancer diagnosis, and treatments. These nanoformulations possess high biocompatibility and bioavailability, which makes them the most suitable candidates for cancer treatment. The size and shape of NPs are critical to achieving an effective drug delivery in cancer treatment and diagnosis. Most NPs currently are under different testing phases (in vitro, preclinical, and clinical), whereas some of them have been approved for therapeutic applications. We have comprehensively reviewed the recent advances in the applications of NPs-based formulations in colon cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Firdos A Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Albalawi
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Student of the volunteer/training program at IRMC
| | - Faheem H Pottoo
- College of Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
6
|
A numerical investigation into the magnetic nanoparticles hyperthermia cancer treatment injection strategies. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Ying W, Zhang Y, Gao W, Cai X, Wang G, Wu X, Chen L, Meng Z, Zheng Y, Hu B, Lin X. Hollow Magnetic Nanocatalysts Drive Starvation-Chemodynamic-Hyperthermia Synergistic Therapy for Tumor. ACS NANO 2020; 14:9662-9674. [PMID: 32709200 DOI: 10.1021/acsnano.0c00910] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic hyperthermia therapy (MHT) has been considered as an excellent alternative for treatment of deep tumor tissue; however, up-regulation of heat shock proteins (HSPs) impairs its hyperthermal therapeutic effect. Reactive oxygen species (ROS) and competitive consumption of ATP are important targets that can block excessive HSP generation. We developed a magnetic nanocatalytic system comprised of glucose oxidase (GOD)-loaded hollow iron oxide nanocatalysts (HIONCs) to drive starvation-chemodynamic-hyperthermia synergistic therapy for tumor treatment. The Fe2+ present in HIONCs contributed to ROS generation via the Fenton reaction, relieving thermo-resistance and inducing cell apoptosis by chemodynamic action. The Fenton effect was enhanced through the conditions created by increased MHT-related temperature, GOD-mediated H2O2 accumulation, and elevated tumor microenvironment acidity. The HIONCs catalase-like activity facilitated conversion of H2O2 to oxygen, thereby replenishing the oxygen levels. We further demonstrated that locally injected HIONCs-GOD effectively inhibited tumor growth in PC3 tumor-bearing mice. This study presents a multifunctional nanocarrier system driving starvation-chemodynamic-magnetic-thermal synergistic therapy via ROS and oxygen modulation for prostate tumor treatment.
Collapse
Affiliation(s)
- Weiwei Ying
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
- Department of Ultrasound, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Yang Zhang
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Wei Gao
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xiaojun Cai
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Gang Wang
- Department of Ultrasound, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Xiafang Wu
- Department of Ultrasound, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Lei Chen
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Zheying Meng
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xianfang Lin
- Department of Ultrasound, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| |
Collapse
|
8
|
Martín MJ, Gentili C, Lassalle V. In vitro Biological Tests as the First Tools To Validate Magnetic Nanotheranostics for Colorectal Cancer Models. ChemMedChem 2020; 15:1003-1017. [PMID: 32365271 DOI: 10.1002/cmdc.202000119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/03/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer death. Nanotechnology has focused on reaching more effective treatments. In this concern, magnetic nanoparticles (MNPs) have been studied for a wide range of biomedical applications related to CRC, such as diagnostic imaging, drug delivery and thermal therapy. However, limited research is currently found in the open literature that refers to nanosystems combining all these mentioned areas (theranostics). When developing nanosystems intended as theranostics applied to CRC, possible variations between patients must be considered. Therefore, multiple in vitro assays are required as guidance for future preclinical and clinical trials. The objective of this contribution is to evaluate the available and recent literature regarding the interactions of MNP and CRC models, aiming to critically analyze the information given by the commonly used assays and evaluate the data provided by each one with a view to implementing this novel technology in CRC diagnostics and therapy.
Collapse
Affiliation(s)
- María Julia Martín
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (CONICET-UNS), Alem 1253, Bahía Blanca, Argentina.,INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (CONICET-UNS), San Juan 670, Bahía Blanca, Argentina
| | - Claudia Gentili
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (CONICET-UNS), San Juan 670, Bahía Blanca, Argentina
| | - Verónica Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (CONICET-UNS), Alem 1253, Bahía Blanca, Argentina
| |
Collapse
|
9
|
3D in silico study of magnetic fluid hyperthermia of breast tumor using Fe 3O 4 magnetic nanoparticles. J Therm Biol 2020; 91:102635. [PMID: 32716877 DOI: 10.1016/j.jtherbio.2020.102635] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 11/24/2022]
Abstract
Modeling and simulation of the temperature distribution, the mass concentration, and the heat transfer in the breast tissue are hot issues in magnetic fluid hyperthermia treatment of cancer. The breast tissue can be visualized as a porous matrix with saturated blood. In this paper, 3D in silico study of breast cancer hyperthermia using magnetic nanoparticles (MNPs) is conducted. The 3D FEM models are incorporated to investigate the infusion and backflow of nanofluid in the breast tumor, the diffusion of nanofluid, temperature distribution during the treatment, and prediction of the fraction of tumor necrosis while dealing with the thermal therapy. All the hyperthermia procedures are simulated and analyzed on COMSOL Multiphysics. The sensitivity of frequency and amplitude of the applied magnetic field (AMF) is investigated on the heating effect of the tumor. The mesh dependent solution of Penne's bioheat model is also analyzed. The simulated results demonstrate successful breast cancer treatment using MNPs with minimum side effects. Validation of current simulations results with experimental studies existing in literature advocates the success of our therapy. The increase in the amplitude and frequency of the AMF increases of the temperature in the tumor. The variation of mesh from coarser to finer increased the temperature through small fractions. We have also simulated the magnetic induction problem where the magnetic field is generated by current-carrying coil conductors induce heat in nearby breast tumors due to excitation of MNPs by magnetic flux. This research will aid treatment protocols and real-time clinical breast cancer treatments.
Collapse
|
10
|
Nuzhina JV, Shtil AA, Prilepskii AY, Vinogradov VV. Preclinical Evaluation and Clinical Translation of Magnetite-Based Nanomedicines. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Abstract
Cancer treatment has been very challenging in recent decades. One of the most promising cancer treatment methods is hyperthermia, which increases the tumor temperature (41-45 °C). Magnetic nanoparticles have been widely used for selective targeting of cancer cells. In the present study, magnetic dextran-spermine nanoparticles, conjugated with Anti-HER2 antibody to target breast cancer cells were developed. The magnetic dextran-spermine nanoparticles (DMNPs) were prepared by ionic gelation, followed by conjugation of antibody to them using EDC-NHS method. Then the Prussian blue method was used to estimate the targeting ability and cellular uptake. Cytotoxicity assay by MTT showed that antibody-conjugated MNPs (ADMNPs) have no toxic effect on SKBR3 and human fibroblast cells. Finally, the hyperthermia was applied to show that synthesized ADMNPs, could increase the cancer cells temperature up to 45 °C and kill most of them without affecting normal cells. These observations proved that Anti-HER2 conjugated magnetic dextran-spermine nanoparticles can target and destroy cancer cells and are potentially suitable for cancer treatment.
Collapse
|