1
|
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, Petrláková K, Kučnirová K, Kaplánek R, Tatar A, Skaličková M, Masařík M, Babula P, Dytrych P, Hoskovec D, Martásek P, Jakubek M. Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem 2024; 7:180. [PMID: 39138299 PMCID: PMC11322665 DOI: 10.1038/s42004-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | | | - Kateřina Petrláková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Ameneh Tatar
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| |
Collapse
|
2
|
Cheng H, Lee W, Hsu F, Lai Y, Huang S, Lim CSH, Lin Z, Hsu S, Chiang C, Jeng L, Shyu W, Chen S. Manipulating the Crosstalk between Cancer and Immunosuppressive Cells with Phototherapeutic Gold-Nanohut for Reprogramming Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404347. [PMID: 38923327 PMCID: PMC11348132 DOI: 10.1002/advs.202404347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Photoimmunotherapy faces challenges due to insufficient intratumoral accumulation of photothermal agents and the reversion of the cancer-immunity cycle during treatment. In this study, an anti-PD-L1-immobilized magnetic gold nanohut, AuNH-2-Ab, with photoresponsive, thermosensitive, and immunomodulatory properties to effectively suppress the growth of primary tumors, elevate immunogenic cell death (ICD) levels, reverse the tumor immune microenvironment (TIME), and consequently inhibit metastases are developed. AuNH-2-Ab achieves high tumor accumulation (9.54% injected dose) following systemic administration, allowing the modulation of hyperthermia dose of over 50 °C in the tumor. By optimizing the hyperthermia dose, AuNH-2-Ab simultaneously target and eliminate cancer cells and tumor-associated macrophages, thereby activating potent antitumor immunity without being compromised by immunosuppressive elements. Hyperthermia/pH induced morphological transformation of AuNH-2-Ab involving the detachment of the surface antibody for in situ PD-L1 inhibition, and exposure of the inner fucoidan layer for natural killer (NK) cell activation. This precision photoimmunotherapy approach reprograms the TIME, significantly prolongs survival in a murine hepatocellular carcinoma model (Hep55.1c), and harnesses the synergistic effects of ICD production and checkpoint inhibitors by utilizing a single nanoplatform.
Collapse
Affiliation(s)
- Hung‐Wei Cheng
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Wei Lee
- Cell Therapy CenterChina Medical University HospitalTaichung40447Taiwan
| | - Fei‐Ting Hsu
- Department of Biological Science and TechnologyChina Medical UniversityTaichung406040Taiwan
| | - Yen‐Ho Lai
- Cell Therapy CenterChina Medical University HospitalTaichung40447Taiwan
| | - Shu‐Rou Huang
- Translational Medicine Research CenterNew Drug development Center and Department of NeurologyChina Medical University HospitalTaichung40447Taiwan
| | - Chris Seh Hong Lim
- Department of Physician Assistant StudiesSchool of Health and Rehabilitation SciencesMGH InstituteBostonMassachusetts02114USA
| | - Zhen‐Kai Lin
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Shih‐Chao Hsu
- Department of SurgeryChina Medical University HospitalTaichung40447Taiwan
| | - Chih‐Sheng Chiang
- Cell Therapy CenterChina Medical University HospitalTaichung40447Taiwan
- Graduate Institute of Biomedical ScienceChina Medical UniversityTaichung406040Taiwan
- Neuroscience and Brain Disease CenterChina Medical UniversityTaichung40447Taiwan
| | - Long‐Bin Jeng
- Cell Therapy CenterChina Medical University HospitalTaichung40447Taiwan
- Organ Transplantation CenterChina Medical University HospitalTaichung40447Taiwan
- School of MedicineChina Medical UniversityTaichung406040Taiwan
| | - Woei‐Cherng Shyu
- Translational Medicine Research CenterNew Drug development Center and Department of NeurologyChina Medical University HospitalTaichung40447Taiwan
- Graduate Institute of Biomedical ScienceChina Medical UniversityTaichung406040Taiwan
- Neuroscience and Brain Disease CenterChina Medical UniversityTaichung40447Taiwan
| | - San‐Yuan Chen
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
- Graduate Institute of Biomedical ScienceChina Medical UniversityTaichung406040Taiwan
- School of DentistryCollege of Dental MedicineKaohsiung Medical UniversityKaohsiung807Taiwan
| |
Collapse
|
3
|
Mendez-Gonzalez D, Lifante J, Zabala Gutierrez I, Marin R, Ximendes E, Sanz-de Diego E, Iglesias-de la Cruz MC, Teran FJ, Rubio-Retama J, Jaque D. Optomagnetic nanofluids for controlled brain hyperthermia: a critical study. NANOSCALE 2022; 14:16208-16219. [PMID: 36281691 DOI: 10.1039/d2nr03413a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Optomagnetic nanofluids (OMNFs) are colloidal dispersions of nanoparticles (NPs) with combined magnetic and optical properties. They are especially appealing in biomedicine since they can be used as minimally invasive platforms for controlled hyperthermia treatment of otherwise difficultly accessible tumors such as intracranial ones. On the one hand, magnetic NPs act as heating mediators when subjected to alternating magnetic fields or light irradiation. On the other hand, suitably tailored luminescent NPs can provide a precise and remote thermal readout in real time. The combination of heating and thermometric properties allows, in principle, to precisely monitor the increase in the temperature of brain tumors up to the therapeutic level, without causing undesired collateral damage. In this work we demonstrate that this view is an oversimplification since it ignores the presence of relevant interactions between magnetic (γ-Fe2O3 nanoflowers) and luminescent nanoparticles (Ag2S NPs) that result in a detrimental alteration of their physicochemical properties. The magnitude of such interactions depends on the interparticle distance and on the surface properties of nanoparticles. Experiments performed in mouse brains (phantoms and ex vivo) revealed that OMNFs cannot induce relevant heating under alternating magnetic fields and fail to provide reliable temperature reading. In contrast, we demonstrate that the use of luminescent nanofluids (containing only Ag2S NPs acting as both photothermal agents and nanothermometers) stands out as a better alternative for thermally monitored hyperthermia treatment of brain tumors in small animal models.
Collapse
Affiliation(s)
- Diego Mendez-Gonzalez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal 2, Madrid, 28040, Spain.
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
| | - José Lifante
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Irene Zabala Gutierrez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal 2, Madrid, 28040, Spain.
| | - Riccardo Marin
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
- NanoBIG, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| | - Erving Ximendes
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
- NanoBIG, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| | - Elena Sanz-de Diego
- IMDEA Nanociencia, Campus Universitario de Cantoblanco, Calle Faraday 9, 28049 Madrid, Spain
| | - M Carmen Iglesias-de la Cruz
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Francisco J Teran
- IMDEA Nanociencia, Campus Universitario de Cantoblanco, Calle Faraday 9, 28049 Madrid, Spain
- Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Jorge Rubio-Retama
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal 2, Madrid, 28040, Spain.
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
| | - Daniel Jaque
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
- NanoBIG, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| |
Collapse
|
4
|
Hoover AR, Liu K, DeVette CI, Krawic JR, Medcalf AD, West CL, Hode T, Lam SSK, Welm AL, Sun XH, Hildebrand WH, Chen WR. Single-cell RNA sequencing reveals localized tumour ablation and intratumoural immunostimulant delivery potentiate T cell mediated tumour killing. Clin Transl Med 2022; 12:e937. [PMID: 35808806 PMCID: PMC9270578 DOI: 10.1002/ctm2.937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 12/16/2022] Open
Abstract
Background Metastatic breast cancer poses great challenge in cancer treatment. N‐dihydrogalactochitosan (GC) is a novel immunoadjuvant that stimulates systemic immune responses when administered intratumourally following local tumour ablation. A combination of photothermal therapy (PTT) and GC, referred to as localized ablative immunotherapy (LAIT), extended animal survival and generates an activated B cell phenotype in MMTV‐PyMT mouse mammary tumour microenvironment (TME). However, how T cell populations respond to LAIT remains to be elucidated. Methods Using depletion antibodies, we studied the contributions of CD8+ and CD4+ T cells to the therapeutic effect of LAIT. Using single‐cell RNA‐sequencing (scRNAseq), we analysed tumour‐infiltrating T cell heterogeneity and dissected their transcriptomes upon treatments of PTT, GC, and LAIT (PTT+GC). Results Loss of CD8+ T cells after LAIT abrogated the therapeutic benefits of LAIT. Ten days after treatment, proportions of CD8+ and CD4+ T cells in untreated TME were 19.2% and 23.0%, respectively. Upon LAIT, both proportions were increased to 25.5% and 36.2%, respectively. In particular, LAIT increased the proportions of naïve and memory cells from a resting state to an activated state. LAIT consistently induced the expression of co‐stimulatory molecules, type I IFN responsive genes, and a series of antitumor cytokines, Ifng, Tnf, Il1, and Il17 in CD8+ and CD4+ T cells. LAIT also induced immune checkpoints Pdcd1, Ctla4, and Lag3 expression, consistent with T cell activation. Relevant to clinical translation, LAIT also upregulated genes in CD8+ and CD4+ T cells that positively correlated with extended survival of breast cancer patients. Conclusions Overall, our results reveal that LAIT prompts immunological remodelling of T cells by inducing broad proinflammatory responses and inhibiting suppressive signalling to drive antitumour immunity.
Collapse
Affiliation(s)
- Ashley R Hoover
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA.,Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kaili Liu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Christa I DeVette
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jason R Krawic
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alexandra D Medcalf
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Connor L West
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Tomas Hode
- Immunophotonics Inc., St. Louis, Missouri, USA
| | | | - Alana L Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Xiao-Hong Sun
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Wei R Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
5
|
Wang M, Li Y, Wang M, Liu K, Hoover AR, Li M, Towner RA, Mukherjee P, Zhou F, Qu J, Chen WR. Synergistic interventional photothermal therapy and immunotherapy using an iron oxide nanoplatform for the treatment of pancreatic cancer. Acta Biomater 2022; 138:453-462. [PMID: 34757232 PMCID: PMC10960566 DOI: 10.1016/j.actbio.2021.10.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer (PC) is the most lethal malignancy due to its high metastatic ability and poor drug permeability. Here, a synergized interventional photothermal-immunotherapy strategy was developed with imaging guidance and temperature monitoring by magnetic resonance imaging (MRI) technique, for the local treatment of metastatic PC. A tumor microenvironment (TME)-responsive nanoplatform was fabricated via coating of DSPE-PEG and indocyanine green (ICG) onto imiquimod (IMQ) loaded amorphous iron oxide nanoparticles (IONs). This unique nanoplatform, IMQ@IONs/ICG, served as a contrast agent for MRI, a drug delivery vehicle for IMQ and ICG, and a catalyst for TME modulation. The biodegradable IMQ@IONs/ICG was also non-toxic, and improved the penetration of the loaded drugs in PC to maximize thermal ablation of the tumor and minimize damage to the surrounding healthy tissue. For the treatment of aggressive, metastatic Panc02-H7 pancreatic tumors in mice, ION-assisted MRI was employed to guide the administration of interventional photothermal therapy (IPTT) and monitor the temperature distribution in target tumor and surrounding tissue during treatment. The local IPTT treatment induced in situ immunogenic cell death (ICD), and, in combination with released IMQ, triggered a strong antitumor immunity, leading to decreased metastases and increased CD8+ in spleen and tumors. With precise local treatment and monitoring, treated primary tumors were completely eradicated, mesentery metastases were dramatically reduced, and the survival time was significantly prolonged, without damage to normal tissue and systemic autoimmunity. Overall, this synergistic strategy represents a promising approach to treat PC with significant potential for clinical applications. STATEMENT OF SIGNIFICANCE: Pancreatic cancer (PC) is one of the most lethal malignancies because it is non-permeable to drugs and highly metastatic. In this study, we designed a tumor microenvironment-responsive amorphous iron oxide nanoplatform (ION) to co-deliver photothermal agent (ICG) and toll-like-receptor-7 agonist (IMQ). This biodegradable nanoplatform IMQ@IONs/ICG improved the penetration of the loaded drugs in pancreatic tumor. With MR imaging guidance and temperature monitoring, the precise interventional photothermal therapy on mouse Panc02-H7 orthotopic tumors releases tumor antigens to initiate tumor-special immune responses, amplified by the released IMQ. Our results demonstrate that IMQ@IONs/ICG overcomes the obstacle of drug delivery to pancreatic tumors, and when combined with photothermal therapy, induces a systemic antitumor immunity to control metastatic tumors.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yong Li
- Interventional Therapy Department, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Miao Wang
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Kaili Liu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Ashley R Hoover
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Min Li
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Feifan Zhou
- School of Biomedical Engineering, Hainan University, Haikou 570228, China.
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Wei R Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
6
|
Liu K, Hoover AR, Krawic JR, DeVette CI, Sun XH, Hildebrand WH, Lang ML, Axtell RC, Chen WR. Antigen presentation and interferon signatures in B cells driven by localized ablative cancer immunotherapy correlate with extended survival. Am J Cancer Res 2022; 12:639-656. [PMID: 34976205 PMCID: PMC8692917 DOI: 10.7150/thno.65773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Rationale: B cells have emerged as key regulators in protective cancer immunity. However, the activation pathways induced in B cells during effective immunotherapy are not well understood. Methods: We used a novel localized ablative immunotherapy (LAIT), combining photothermal therapy (PTT) with intra-tumor delivery of the immunostimulant N-dihydrogalactochitosan (GC), to treat mice bearing mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT). We used single-cell RNA sequencing to compare the transcriptional changes induced by PTT, GC and PTT+GC in B cells within the tumor microenvironment (TME). Results: LAIT significantly increased survival in the tumor-bearing mice, compared to the treatment by PTT and GC alone. We found that PTT, GC and PTT+GC increased the proportion of tumor-infiltrating B cells and induced gene expression signatures associated with B cell activation. Both GC and PTT+GC elevated gene expression associated with antigen presentation, whereas GC elevated transcripts that regulate B cell activation and GTPase function and PTT+GC induced interferon response genes. Trajectory analysis, where B cells were organized according to pseudotime progression, revealed that both GC and PTT+GC induced the differentiation of B cells from a resting state towards an effector phenotype. The analyses confirmed upregulated interferon signatures in the differentiated tumor-infiltrating B cells following treatment by PTT+GC but not by GC. We also observed that breast cancer patients had significantly longer survival time if they had elevated expression of genes in B cells that were induced by PTT+GC therapy in the mouse tumors. Conclusion: Our findings show that the combination of local ablation and local application of immunostimulant initiates the activation of interferon signatures and antigen-presentation in B cells which is associated with positive clinical outcomes for breast cancer. These findings broaden our understanding of LAIT's regulatory roles in remodeling TME and shed light on the potentials of B cell activation in clinical applications.
Collapse
|
7
|
Pang S, Kapur A, Zhou K, Anastasiadis P, Ballirano N, Kim AJ, Winkles JA, Woodworth GF, Huang H. Nanoparticle-assisted, image-guided laser interstitial thermal therapy for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1826. [PMID: 35735205 PMCID: PMC9540339 DOI: 10.1002/wnan.1826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
Laser interstitial thermal therapy (LITT) guided by magnetic resonance imaging (MRI) is a new treatment option for patients with brain and non-central nervous system (non-CNS) tumors. MRI guidance allows for precise placement of optical fiber in the tumor, while MR thermometry provides real-time monitoring and assessment of thermal doses during the procedure. Despite promising clinical results, LITT complications relating to brain tumor procedures, such as hemorrhage, edema, seizures, and thermal injury to nearby healthy tissues, remain a significant concern. To address these complications, nanoparticles offer unique prospects for precise interstitial hyperthermia applications that increase heat transport within the tumor while reducing thermal impacts on neighboring healthy tissues. Furthermore, nanoparticles permit the co-delivery of therapeutic compounds that not only synergize with LITT, but can also improve overall effectiveness and safety. In addition, efficient heat-generating nanoparticles with unique optical properties can enhance LITT treatments through improved real-time imaging and thermal sensing. This review will focus on (1) types of inorganic and organic nanoparticles for LITT; (2) in vitro, in silico, and ex vivo studies that investigate nanoparticles' effect on light-tissue interactions; and (3) the role of nanoparticle formulations in advancing clinically relevant image-guided technologies for LITT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Sumiao Pang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anshika Kapur
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Keri Zhou
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Pavlos Anastasiadis
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Nicholas Ballirano
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anthony J. Kim
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Jeffrey A. Winkles
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Graeme F. Woodworth
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Huang‐Chiao Huang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| |
Collapse
|
8
|
El-Nabulsi RA. Fractal Pennes and Cattaneo-Vernotte bioheat equations from product-like fractal geometry and their implications on cells in the presence of tumour growth. J R Soc Interface 2021; 18:20210564. [PMID: 34465211 PMCID: PMC8437240 DOI: 10.1098/rsif.2021.0564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 11/12/2022] Open
Abstract
In this study, the Pennes and Cattaneo-Vernotte bioheat transfer equations in the presence of fractal spatial dimensions are derived based on the product-like fractal geometry. This approach was introduced recently, by Li and Ostoja-Starzewski, in order to explore dynamical properties of anisotropic media. The theory is characterized by a modified gradient operator which depends on two parameters: R which represents the radius of the tumour and R0 which represents the radius of the spherical living tissue. Both the steady and unsteady states for each fractal bioheat equation were obtained and their implications on living cells in the presence of growth of a large tumour were analysed. Assuming a specific heating/cooling by a constant heat flux equivalent to the metabolic heat generation in the tissue, it was observed that the solutions of the fractal bioheat equations are robustly affected by fractal dimensions, the radius of the tumour growth and the dimensions of the living cell tissue. The ranges of both the fractal dimensions and temperature were obtained, analysed and compared with recent studies. This study confirms the importance of fractals in medicine.
Collapse
Affiliation(s)
- Rami Ahmad El-Nabulsi
- Research Center for Quantum Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University 50200, Thailand
- Athens Institute for Education and Research, Mathematics and Physics Divisions, 8 Valaoritou Street, Kolonaki 10671, Athens, Greece
| |
Collapse
|
9
|
Jin F, Liu D, Xu X, Ji J, Du Y. Nanomaterials-Based Photodynamic Therapy with Combined Treatment Improves Antitumor Efficacy Through Boosting Immunogenic Cell Death. Int J Nanomedicine 2021; 16:4693-4712. [PMID: 34267518 PMCID: PMC8275223 DOI: 10.2147/ijn.s314506] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Benefiting from the rapid development of nanotechnology, photodynamic therapy (PDT) is arising as a novel non-invasive clinical treatment for specific cancers, which exerts direct efficacy in destroying primary tumors by generating excessive cytotoxic reactive oxygen species (ROS). Notably, PDT-induced cell death is related to T cell-mediated antitumor immune responses through induction of immunogenic cell death (ICD). However, ICD elicited via PDT is not strong enough and is limited by immunosuppressive tumor microenvironment (ITM). Therefore, it is necessary to improve PDT efficacy through enhancing ICD with the combination of synergistic tumor therapies. Herein, the recent progress of nanomaterials-based PDT combined with chemotherapy, photothermal therapy, radiotherapy, and immunotherapy, employing ICD-boosted treatments is reviewed. An outlook about the future application in clinics of nanomaterials-based PDT strategies is also mentioned.
Collapse
Affiliation(s)
- Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiansong Ji
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, People's Republic of China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
10
|
Balakrishnan PB, Sweeney EE, Ramanujam AS, Fernandes R. Photothermal therapies to improve immune checkpoint blockade for cancer. Int J Hyperthermia 2021; 37:34-49. [PMID: 33426992 DOI: 10.1080/02656736.2020.1797190] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Immune checkpoint blockade (ICB) comprising monoclonal antibodies (mAbs) against immune 'checkpoints', such as CTLA-4 and the PD1/PDL1 axis have dramatically improved clinical outcomes for patients with cancer. However, ICB by itself has failed to provide benefit in a wide range of solid tumors, where recurrence still occurs with high incidence. These poor response rates may be due to the therapeutic shortcomings of ICB; namely, a lack of cancer-specific cytotoxicity and ability to debulk tumors. To overcome these limitations, effective ICB therapy may require the combination with other complementary therapeutic platforms. Here, we propose that photothermal therapy (PTT) is an ideal therapeutic modality for combination with ICB because it can generate both tumor-specific cytotoxicity and immunogenicity. PTT elicits these specific effects because it is a localized thermal ablation technique that utilizes light-responsive nanoparticles activated by a wavelength-matched laser. While ICB immunotherapy alone improves cancer immunogenicity but does not generate robust antitumor cytotoxicity, nanoparticle-based PTT elicits targeted and controlled cytotoxicity but sub-optimal long-term immunogenicity. Thus, the two platforms offer complementary and potentially synergistic antitumor effects, which will be detailed in this review. We highlight three classes of nanoparticles used as agents of PTT (i.e., metallic inorganic nanoparticles, carbon-based nanoparticles and organic dyes), and illustrate the potential for nanoparticle-based PTT to potentiate the effects of ICB in preclinical models. Through this discussion, we aim to present PTT combined with ICB as a potent synergistic combination treatment for diverse cancer types currently refractory to ICB as well as PTT monotherapies.
Collapse
Affiliation(s)
- Preethi B Balakrishnan
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA
| | - Elizabeth E Sweeney
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA
| | - Anvitha S Ramanujam
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA.,Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA.,The Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA.,Department of Medicine, The George Washington University, Washington, DC, USA
| |
Collapse
|
11
|
Wang M, Rao J, Wang M, Li X, Liu K, Naylor MF, Nordquist RE, Chen WR, Zhou F. Cancer photo-immunotherapy: from bench to bedside. Theranostics 2021; 11:2218-2231. [PMID: 33500721 PMCID: PMC7797676 DOI: 10.7150/thno.53056] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Targeted therapy and immunotherapy in combination is considered the ideal strategy for treating metastatic cancer, as it can eliminate the primary tumors and induce host immunity to control distant metastases. Phototherapy, a promising targeted therapy, eradicates primary tumors using an appropriate dosage of focal light irradiation, while initiating antitumor immune responses through induced immunogenic tumor cell death. Recently, phototherapy has been employed to improve the efficacy of immunotherapies such as chimeric antigen receptor T-cell therapy and immune checkpoint inhibitors. Phototherapy and immunoadjuvant therapy have been used in combination clinically, wherein the induced immunogenic cell death and enhanced antigen presentation synergy, inducing a systemic antitumor immune response to control residual tumor cells at the treatment site and distant metastases. This review summarizes studies on photo-immunotherapy, the combination of phototherapy and immunotherapy, especially focusing on the development and progress of this unique combination from a benchtop project to a promising clinical therapy for metastatic cancer.
Collapse
Affiliation(s)
- Miao Wang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Jie Rao
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Meng Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaosong Li
- Department of Oncology, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Kaili Liu
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | | | - Robert E. Nordquist
- Immunophotonics, Inc., 4320 Forest Park Ave., #303 (BAL), St. Louis, MO 63108, USA
| | - Wei R. Chen
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Feifan Zhou
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
12
|
Cativa NM, dell'Erba IE, Waiman CV, Arenas GF, Ceolín M, Giovanetti LJ, Ramallo-López JM, Eliçabe G, Hoppe CE. Tuning the Photothermal Effect of Carboxylated-Coated Silver Nanoparticles through pH-Induced Reversible Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13998-14008. [PMID: 33170718 DOI: 10.1021/acs.langmuir.0c02528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The photothermal response of mercaptoundecanoic acid (MUA)-coated Ag nanoparticles (Ag@MUA NPs) in both aqueous dispersions and paper substrates was determined as a function of pH when irradiated with a green laser or a blue LED source. Aqueous dispersions of Ag@MUA NPs showed an aggregation behavior by acidification that was used for the formation of NPs clusters of variable sizes. Aggregation was induced by changing the pH across the apparent pKa of the acid, higher than the pKa of the free acid. Formation of these aggregates was completely reversible allowing the return to the well-dispersed initial state by simply increasing the pH by the addition of a base. Aggregation produced a shift of the plasmon band that changed the spectra of the dispersions and their ability to be remotely heated when irradiated with visible light. These aggregates could be transferred to paper by simple impregnation of the substrates with the dispersion. On the solid substrate, a higher photothermal response than in the liquid medium was observed. A high local increase of up to 75 °C could be recorded on paper after only 30 s of irradiation with a green laser, whereas a blue LED array was enough for inducing the melting of a solid paraffin (Tm = 36-38 °C) deposited on it. This work demonstrates that photothermal heating can be controlled by the reversible aggregation of NPs to induce different thermal responses in liquid and solid media.
Collapse
Affiliation(s)
- Nancy M Cativa
- Nanostructured Polymer Division, INTEMA, UNMDP-CONICET, Avenida Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina
| | - Ignacio E dell'Erba
- Nanostructured Polymer Division, INTEMA, UNMDP-CONICET, Avenida Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina
| | - Carolina V Waiman
- Instituto de Química del Sur (INQUISUR), CONICET-Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, Bahía Blanca, 8000, Argentina
| | - Gustavo F Arenas
- LASER Laboratory-ICYTE-UNMDP-CONICET, Avenida J. B. Justo 4302, B7608FDQ Mar del Plata, Argentina
| | - Marcelo Ceolín
- INIFTA, UNLP-CONICET, Diagonal 113 y 64, CP 1900 La Plata, Argentina
| | | | | | - Guillermo Eliçabe
- Nanostructured Polymer Division, INTEMA, UNMDP-CONICET, Avenida Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina
| | - Cristina E Hoppe
- Nanostructured Polymer Division, INTEMA, UNMDP-CONICET, Avenida Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina
| |
Collapse
|
13
|
Abstract
Phototherapies offer promising alternatives to traditional cancer therapies. Phototherapies mainly rely on manipulation of target tissue through photothermal, photochemical, or photomechanical interactions. Combining phototherapy with immunotherapy has the benefit of eliciting a systemic immune response. Specifically, photothermal therapy (PTT) has been shown to induce apoptosis and necrosis in cancer cells, releasing tumor associated antigenic peptides while sparing healthy host cells, through temperature increase in targeted tissue. However, the tissue temperature must be monitored and controlled to minimize adverse thermal effects on normal tissue and to avoid the destruction of tumor-specific antigens, in order to achieve the desired therapeutic effects of PTT. Techniques for monitoring PTT have evolved from post-treatment quantification methods like enzyme linked immunosorbent assay, western blot analysis, and flow cytometry to modern methods capable of real-time monitoring, such as magnetic resonance thermometry, computed tomography, and photoacoustic imaging. Monitoring methods are largely chosen based on the type of light delivery to the target tissue. Interstitial methods of thermometry, such as thermocouples and fiber-optic sensors, are able to monitor temperature of the local tumor environment. However, these methods can be challenging if the phototherapy itself is interstitially administered. Increasingly, non-invasive therapies call for non-invasive monitoring, which can be achieved through magnetic resonance thermometry, computed tomography, and photoacoustic imaging techniques. The purpose of this review is to introduce the feasible methods used to monitor tissue temperature during PTT. The descriptions of different techniques and the measurement examples can help the researchers and practitioners when using therapeutic PTT.
Collapse
|
14
|
Zhang D, Xu H, Zhang X, Liu Y, Wu M, Li J, Yang H, Liu G, Liu X, Liu J, Yuan Z. Self-Quenched Metal-Organic Particles as Dual-Mode Therapeutic Agents for Photoacoustic Imaging-Guided Second Near-Infrared Window Photochemotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25203-25212. [PMID: 29979022 DOI: 10.1021/acsami.8b08419] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The nanosized metal-organic particles (NMOPs) recently have attracted tremendous attentions in biomedical applications. However, few studies have developed metal-organic nanoparticles (NMOPs) as near-infrared (NIR) II phototherapeutic agents and as Fenton-like agents for cancer theranostics. Herein, directly using organic dye and Cu(II)-ion complexes to construct NMOPs, as dual-mode therapeutic agent for PA imaging-guided photochemotherapy in NIR II window, is reported. The NMOPs are simply an assembly of Cu(II) ion and tetrahydroxyanthraquinone (THQ) complexes [Cu(II)-THQ] n through the coordination effect, van der Waals force, and π-π interactions. After modification of polyethylene glycol (PEG-(NH2)2), the obtained Cu-THQNPs endow excellent biocompatibility and stability in physiological conditions. Because of the strong absorption at NIR II window and photoinduced electrontransfer (PET) mechanism, the Cu-THQNPs not only acted as an excellent photothermal agent with extremely high light-to-heat conversion ability (51.34%) at 1064 nm for phototherapy but also explored as the PA contrast agent for precisely tracking and guiding the therapy in vivo. Most strikingly, our Cu-THQNPs can be degraded by tumor-specific acidic-cleaving of the coordination bonds and follow by the slow release of Cu(II) into tumors, which can act as Fenton-like agents to generate •OH from H2O2 for enhancing the antitumor efficacy in vivo. With almost 100% prevention of the tumor growth for ca. 14 days and no obvious toxicity based on blood biochemical/histological analysis, this work highlights the Cu-THQNPs as an efficient NIR II therapeutic agent for precise cancer theranostics.
Collapse
Affiliation(s)
- Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou 350002 , P. R. China
| | - Hao Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , P. R. China
- Bioimaging Core, Faculty of Health Sciences , University of Macau , Macau 999078 SAR, P. R. China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Yubin Liu
- Bioimaging Core, Faculty of Health Sciences , University of Macau , Macau 999078 SAR, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Juan Li
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou 350002 , P. R. China
| | - Huanghao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou 350002 , P. R. China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine , Xiamen University , Xiamen 361005 , P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
- Liver Disease Center , The First Affiliated Hospital of Fujian Medical University , Fuzhou 350005 , P. R. China
| | - Zhen Yuan
- Bioimaging Core, Faculty of Health Sciences , University of Macau , Macau 999078 SAR, P. R. China
| |
Collapse
|