1
|
Wang H, Zou J, Zhao S, Zhang A. Optimization of three-dimensional esophageal tumor ablation by simultaneous functioning of multiple electrodes. Med Biol Eng Comput 2025; 63:793-806. [PMID: 39496870 DOI: 10.1007/s11517-024-03230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024]
Abstract
Radiofrequency ablation is a widely accepted minimal-invasive and effective local treatment for tumors. However, its current application in esophageal cancer treatment is limited to targeting thin and superficial lesions, such as Barrett's Esophagus. This study proposes an optimization method using multiple electrodes simultaneously to regulate the temperature field and achieve conformal ablation of tumors. A particle swarm optimization algorithm, coupled with a three-dimensional thermal ablation model, was developed to optimize the status of the functioning electrodes, the optimal voltage (Vopt), and treatment duration (ttre) for targeted esophageal tumors. This approach takes into account both the electrical and thermal interactions of the electrodes. The results indicate that for esophageal cancers at various stages, with thickness (c) ranging from 4.5 mm to 10.0 mm, major axis (a) ranging from 7.3 mm to 27.3 mm, and minor axis (b) equaling 7.3 mm or 27.3 mm, as well as non-symmetrical geometries, complete tumor coverage (over 99.5%) close to conformal can be achieved. This method illustrates possible precise conformal ablation of esophageal cancers and it may also be used for conformal treatments of other intraluminal lesions.
Collapse
Affiliation(s)
- Hongying Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jincheng Zou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shiqing Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Aili Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Zhao Z, Li W, Liu P, Zhang A, Sun J, Xu LX. Survival Analysis for Multimode Ablation Using Self-Adapted Deep Learning Network Based on Multisource Features. IEEE J Biomed Health Inform 2024; 28:19-30. [PMID: 37015120 DOI: 10.1109/jbhi.2023.3260776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Novel multimode thermal therapy by freezing before radio-frequency heating has achieved a desirable therapeutic effect in liver cancer. Compared with surgical resection, ablation treatment has a relatively high risk of tumor recurrence. To monitor tumor progression after ablation, we developed a novel survival analysis framework for survival prediction and efficacy assessment. We extracted preoperative and postoperative MRI radiomics features and vision transformer-based deep learning features. We also combined the immune features extracted from peripheral blood immune responses using flow cytometry and routine blood tests before and after treatment. We selected features using random survival forest and improved the deep Cox mixture (DCM) for survival analysis. To properly accommodate multitype input features, we proposed a self-adapted fully connected layer for locally and globally representing features. We evaluated the method using our clinical dataset. Of note, the immune features rank the highest feature importance and contribute significantly to the prediction accuracy. The results showed a promising C$^{\mathit{td}}$-index of 0.885 $\pm$ 0.040 and an integrated Brier score of 0.041 $\pm$ 0.014, which outperformed state-of-the-art method combinations of survival prediction. For each patient, individual survival probability was accurately predicted over time, which provided clinicians with trustable prognosis suggestions.
Collapse
|
3
|
Wang Y, Wang GZ, Chen C, Huang HZ, Wang YH, He XH, Xu LX, Xu LC, Li WT. Exploration of the impact of multimode thermal therapy versus radiofrequency ablation on CD8 + T effector cells of liver malignancies based on single cell transcriptomics. Front Immunol 2023; 14:1172362. [PMID: 37334386 PMCID: PMC10272448 DOI: 10.3389/fimmu.2023.1172362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Multimode thermal therapy (MTT) is an innovative interventional therapy developed for the treatment of liver malignancies. When compared to the conventional radiofrequency ablation (RFA), MTT typically offers improved prognosis for patients. However, the effect of MTT on the peripheral immune environment and the mechanisms underlying the enhanced prognosis have yet to be explored. The aim of this study was to further investigate the mechanisms responsible for the difference in prognosis between the two therapies. Methods In this study, peripheral blood samples were collected from four patients treated with MTT and two patients treated with RFA for liver malignancies at different time points before and after the treatment. Single cell sequencing was performed on the blood samples to compare and analyze the activation pathways of peripheral immune cells following the MTT and RFA treatment. Results There was no significant effect of either therapy on the composition of immune cells in peripheral blood. However, the differential gene expression and pathway enrichment analysis demonstrated enhanced activation of T cells in the MTT group compared to the RFA group. In particular, there was a remarkable increase in TNF-α signaling via NF-κB, as well as the expression of IFN-α and IFN-γ in the CD8+ effector T (CD8+ Teff) cells subpopulation, when compared to the RFA group. This may be related to the upregulation of PI3KR1 expression after MTT, which promotes the activation of PI3K-AKT-mTOR pathway. Conclusion This study confirmed that MTT could more effectively activate peripheral CD8+ Teff cells in patients compared with RFA and promote the effector function, thus resulting in a better prognosis. These results provide a theoretical basis for the clinical application of MTT therapy.
Collapse
Affiliation(s)
- Ying Wang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guang-Zhi Wang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Department of Medical Imaging Center, Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Chao Chen
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hao-Zhe Huang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yao-Hui Wang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xin-Hong He
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lisa X. Xu
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Chao Xu
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wen-Tao Li
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
4
|
Peng P, Lou Y, Wang J, Wang S, Liu P, Xu LX. Th1-Dominant CD4+ T Cells Orchestrate Endogenous Systematic Antitumor Immune Memory After Cryo-Thermal Therapy. Front Immunol 2022; 13:944115. [PMID: 35874660 PMCID: PMC9304863 DOI: 10.3389/fimmu.2022.944115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Recent studies suggest that highly activated, polyfunctional CD4+ T cells are incredibly effective in strengthening and sustaining overall host antitumor immunity, promoting tumor-specific CD4+ T-cell responses and effectively enhancing antitumor immunity by immunotherapy. Previously, we developed a novel cryo-thermal therapy for local tumor ablation and achieved long-term survival rates in several tumor models. It was discovered that cryo-thermal therapy remodeled the tumor microenvironment and induced an antigen-specific CD4+ T-cell response, which mediated stronger antitumor immunity in vivo. In this study, the phenotype of bulk T cells in spleen was analyzed by flow cytometry after cryo-thermal therapy and both CD4+ Th1 and CD8+ CTL were activated. In addition, by using T-cell depletion, isolation, and adoptive T-cell therapy, it was found that cryo-thermal therapy induced Th1-dominant CD4+ T cells that directly inhibited the growth of tumor cells, promoted the maturation of MDSCs via CD4+ T-cell-derived IFN-γ and enhanced the cytotoxic effector function of NK cells and CD8+ T cells, and promoted the maturation of APCs via cell-cell contact and CD4+ T-cell-derived IFN-γ. Considering the multiple roles of cryo-thermal-induced Th1-dominant CD4+ T cells in augmenting antitumor immune memory, we suggest that local cryo-thermal therapy is an attractive thermo-immunotherapy strategy to harness host antitumor immunity and has great potential for clinical application.
Collapse
Affiliation(s)
| | | | | | | | - Ping Liu
- *Correspondence: Lisa X. Xu, ; Ping Liu,
| | - Lisa X. Xu
- *Correspondence: Lisa X. Xu, ; Ping Liu,
| |
Collapse
|
5
|
Ranjbartehrani P, Etheridge M, Ramadhyani S, Natesan H, Bischof J, Shao Q. Characterization of Miniature Probes for Cryosurgery, Thermal Ablation, and Irreversible Electroporation on Small Animals. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pegah Ranjbartehrani
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
| | - Michael Etheridge
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
| | | | | | - John Bischof
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
- Department of Biomedical Engineering University of Minnesota Minneapolis MN 55455 USA
| | - Qi Shao
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
6
|
Li W, Lou Y, Wang G, Zhang K, Xu L, Liu P, Xu LX. A Novel Multi-Mode Thermal Therapy for Colorectal Cancer Liver Metastasis: A Pilot Study. Biomedicines 2022; 10:biomedicines10020280. [PMID: 35203498 PMCID: PMC8869583 DOI: 10.3390/biomedicines10020280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/17/2023] Open
Abstract
A novel multi-mode thermal therapy was developed for local tumor ablation and the systemic stimulation of anti-tumor immunity, consisting of a rapid liquid nitrogen freezing, and followed by the radiofrequency heating of target tumor tissue. This pilot study aimed to compare the therapeutic effects of the new therapy with conventional radiofrequency ablation (RFA) on patients with colorectal cancer liver metastasis (CRCLM). From August 2016 to September 2019, thirty-one patients with CRCLM received either multi-mode thermal therapy (n = 17) or RFA (n = 14). Triphasic contrast-enhanced magnetic resonance imaging (MRI), routine blood tests, and peripheral blood immune responses were evaluated before the treatment and in 1, 3, 6, and 12 months after. Local tumor response and progression-free survival (PFS) were assessed using the Kaplan-Meier method, and pre- and post-treatment immune cell counts were analyzed using Mann-Whitney U and Wilcoxon tests. A significantly longer PFS was observed in the multi-mode thermal therapy group in comparison to that of the conventional RFA group (median, 11.4 versus 3.4 months, p = 0.022). It was found that multi-mode therapy induced the functional maturation of dendritic cells, promoted CD4+ T cell-mediated antitumor responses, and decreased regulatory T cells, contributing to better therapeutic efficacy in CRCLM patients.
Collapse
Affiliation(s)
- Wentao Li
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai 200030, China; (W.L.); (L.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China
| | - Yue Lou
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.L.); (G.W.); (K.Z.)
| | - Guangzhi Wang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.L.); (G.W.); (K.Z.)
| | - Kangwei Zhang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.L.); (G.W.); (K.Z.)
| | - Lichao Xu
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai 200030, China; (W.L.); (L.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China
| | - Ping Liu
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.L.); (G.W.); (K.Z.)
- Correspondence: (P.L.); (L.X.X.)
| | - Lisa X. Xu
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.L.); (G.W.); (K.Z.)
- Correspondence: (P.L.); (L.X.X.)
| |
Collapse
|
7
|
Wang X, Li W, Zhang K, Sun J, Yang J, Zhang A, Xu L. A Novel Local Tumor Progression Prediction Method for Multimode Ablation Treatment. IEEE Trans Biomed Eng 2021; 69:1386-1397. [PMID: 34591754 DOI: 10.1109/tbme.2021.3116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The multimode ablation of liver cancer, which uses radio-frequency heating after a pre-freezing process to treat the tumor, has shown significantly improved therapeutic effects and enhanced anti-tumor immune response. Unlike open surgery, the ablated lesions remain in the body after treatment, so it is critical to assess the immediate outcome and to monitor disease status over time. Here we propose a novel tumor progression prediction method for simultaneous postoperative evaluation and prognosis analysis. METHODS We propose to leverage the intraoperative therapeutic information extracted from thermal dose distribution. For tumors with specific sensitivity reflected in medical images, different thermal doses implicitly indicate the degree of instant damage and long-term inhibition excited under specific ablation energy. We further propose a survival analysis framework for the multimode ablation treatment. It extracts carefully designed features from clinical, preoperative, intraoperative, and postoperative data, then uses random survival forest for feature selection and deep neural networks for survival prediction. RESULTS We evaluated the proposed methods using clinical data. The results show that our method outperforms the state-of-the-art survival analysis methods with a C-index of 0.8550.090. The thermal dose information contributes significantly to the prediction accuracy by taking up 21.7% of the overall feature importance. CONCLUSION The proposed methods have been demonstrated to be a powerful tool in tumor progression prediction of multimode ablation therapy. SIGNIFICANCE This kind of data-driven prognosis analysis may benefit personalized medicine and simplify the follow-up process.
Collapse
|
8
|
Zhu J, Lou Y, Liu P, Xu LX. Tumor-related HSP70 released after cryo-thermal therapy targeted innate immune initiation in the antitumor immune response. Int J Hyperthermia 2021; 37:843-853. [PMID: 32654540 DOI: 10.1080/02656736.2020.1788173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In our previous study, a novel cryo-thermal therapy that could stimulate the maturation of innate immune cells to subsequently activate the CD4+Th1 cell-dominated antitumor response was developed. However, why cryo-thermal therapy can induce the maturation of innate immunity remains unknown. METHODS In this study, western blot and ELISA were used to analyze the levels of damage-associated molecular patterns (DAMPs, including heat shock protein 70 (HSP70), calreticulin and high-mobility group box protein 1) in situ and in the peripheral blood at different times after cryo-thermal therapy or traditional radiofrequency ablation. The effects of these three DAMPs on myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs) and macrophages were investigated by antibody neutralization in vitro. The phenotypic and functional changes in MDSCs, DCs and macrophages were analyzed using FACS and qRT-PCR. An anti-HSP70 antibody was injected intravenously at 6 h after cryo-thermal therapy on days 1 and 2 and mouse survival was monitored. RESULTS Cryo-thermal therapy could trigger the release of DAMPs in situ and in the peripheral circulation, which could downregulate the proportion and suppressive signature of MDSCs, and promote the M1 macrophages polarization and DCs maturation. Among three DAMPs, HSP70 played the most evident role in M1 macrophage polarization. In vivo neutralization of HSP70 in the early stage of treatment could significantly decrease the survival rate of cryo-thermal therapy treated mice. CONCLUSIONS Local cryo-thermal therapy not only destroyed solid tumors thermally and mechanically but also induced the release of a large amount of DAMPs to effectively trigger a systemic antitumor response.
Collapse
Affiliation(s)
- Jun Zhu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Neurosurgery Department, Ruijin Hospital,School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yue Lou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lisa X Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Yang W, An Y, Li Q, Liu C, Zhu B, Huang Q, Zhao M, Yang F, Feng H, Hu K. Co-ablation versus cryoablation for the treatment of stage III-IV non-small cell lung cancer: A prospective, noninferiority, randomized, controlled trial (RCT). Thorac Cancer 2020; 12:475-483. [PMID: 33319493 PMCID: PMC7882381 DOI: 10.1111/1759-7714.13779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Background This study compared a co‐ablation (CA) system, which is a novel ablation device, with an argon‐helium cryoablation (AHC) system. We aimed to compare the efficacy and safety of CA and AHC for the treatment of stage III–IV non‐small cell lung cancer (NSCLC). Methods We conducted a multicenter randomized controlled trial (RCT) to determine whether CA was noninferior to AHC. The primary efficacy endpoints were the iceball coverage rate (ICR) and the disease control rate (DCR) one month after treatment. Noninferiority was declared if the lower limit of two‐sided 95% confidence interval (CI) was less than 10%. The ICR and DCR were identified by logistic regression. Treatment safety was assessed. Results A total of 81 patients underwent randomization (41 assigned to the CA and 40 assigned to the AHC groups)and transthoracic ablation. The ICRs in the CA and AHC groups were 99.24% ± 2.18% and 98.66% ± 3.79%, respectively. Central lesions were associated with an increased risk of an incomplete ICR. The DCRs in the CA and AHC groups were 97.6% and 95%, respectively. A smaller lesion area in the CA group was significantly correlated with a better DCR. The rate of complications was 29.26% in the CA group and 30% in the AHC group. (P = 0.943). There was less probe usage per patient in the CA group. Conclusions We determined that CA is noninferior to AHC in terms of efficacy and safety for the treatment of stage III–IV NSCLC. A smaller lesion area in the CA group was significantly correlated with a better DCR. Key points CA was noninferior to AHC for stage III–IV NSCLC.
Collapse
Affiliation(s)
- Wuwei Yang
- Department of Tumor Minimally Invasive Treatment, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yonghui An
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Quanwang Li
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanbo Liu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baorang Zhu
- Department of Tumor Minimally Invasive Treatment, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qianfu Huang
- Hygea Medical Technology Co., Ltd., Beijing, China
| | - Mengfei Zhao
- Hygea Medical Technology Co., Ltd., Beijing, China
| | - Fei Yang
- Hygea Medical Technology Co., Ltd., Beijing, China
| | - Huasong Feng
- Department of Respiratory Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kaiwen Hu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Wang Y, Zhang K, Zhang A, Xu LX. A New Model for Estimation of Individual Blood Flow Effect during Multimode Thermal Therapy of Tumor . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5053-5056. [PMID: 33019122 DOI: 10.1109/embc44109.2020.9175795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An accurate temperate control is the key during multimode thermal therapy of tumor. However, the tumor tissue temperature is greatly influenced by local blood flow changes of individuals. A simple but effective method is proposed for estimation of the local blood flow and its impact on the ablation boundary temperature. The proposed model is focused on the tumor domain, namely the targeted treatment region. In the natural thawing process post tumor freezing during the therapy, the main energy transferring to the tumor tissue comes from the blood flow of the surrounding normal tissue on the tumor boundary. By fitting the rewarming temperature measured in the tissue, the inversed problem is solved by the model to calculate the boundary convection condition and thus to predict the corresponding blood perfusion rate. The model is validated by the animal experimental data. The calculated blood perfusion rates are within the published range, but differ individually. The results prove that the new model and the estimated personalized convection coefficient can better predict the tissue temperature distribution during the therapy.Clinical Relevance-The model estimates the local blood flows around the tumor of individuals and the influence on heat transfer process. It can be used to better predict and control the temperature on the tumor boundary during the therapy that is critical to the therapeutic effect. The model also greatly cuts down the calculation time which facilitates the possibility of intraoperative real time monitoring.
Collapse
|