1
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
2
|
Tiegs-Heiden CA. MR-guided Focused Ultrasound for Musculoskeletal Applications. Magn Reson Imaging Clin N Am 2024; 32:641-650. [PMID: 39322353 DOI: 10.1016/j.mric.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
MR-guided focused ultrasound (MRgFUS) has a wide range of musculoskeletal applications. Some indications are well validated, specifically the treatment of painful osseous metastases and osteoid osteoma. Others are only beginning to be studied, such as the treatment of painful facet, sacroiliac, and knee joints. MRgFUS of soft tissue lesions also shows promise, particularly in patients whom alternative modalities are not feasible or may result in significant morbidity. Ongoing and future research will illuminate the full potential for MRgFUS in the treatment of musculoskeletal conditions.
Collapse
Affiliation(s)
- Christin A Tiegs-Heiden
- Division of Musculoskeletal Radiology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
3
|
Slotman DJ, Bartels LW, Nijholt IM, Froeling M, Huirne JAF, Moonen CTW, Boomsma MF. Intravoxel incoherent motion (IVIM)-derived perfusion fraction mapping for the visual evaluation of MR-guided high intensity focused ultrasound (MR-HIFU) ablation of uterine fibroids. Int J Hyperthermia 2024; 41:2321980. [PMID: 38616245 DOI: 10.1080/02656736.2024.2321980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND A method for periprocedural contrast agent-free visualization of uterine fibroid perfusion could potentially shorten magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) treatment times and improve outcomes. Our goal was to test feasibility of perfusion fraction mapping by intravoxel incoherent motion (IVIM) modeling using diffusion-weighted MRI as method for visual evaluation of MR-HIFU treatment progression. METHODS Conventional and T2-corrected IVIM-derived perfusion fraction maps were retrospectively calculated by applying two fitting methods to diffusion-weighted MRI data (b = 0, 50, 100, 200, 400, 600 and 800 s/mm2 at 1.5 T) from forty-four premenopausal women who underwent MR-HIFU ablation treatment of uterine fibroids. Contrast in perfusion fraction maps between areas with low perfusion fraction and surrounding tissue in the target uterine fibroid immediately following MR-HIFU treatment was evaluated. Additionally, the Dice similarity coefficient (DSC) was calculated between delineated areas with low IVIM-derived perfusion fraction and hypoperfusion based on CE-T1w. RESULTS Average perfusion fraction ranged between 0.068 and 0.083 in areas with low perfusion fraction based on visual assessment, and between 0.256 and 0.335 in surrounding tissues (all p < 0.001). DSCs ranged from 0.714 to 0.734 between areas with low perfusion fraction and the CE-T1w derived non-perfused areas, with excellent intraobserver reliability of the delineated areas (ICC 0.97). CONCLUSION The MR-HIFU treatment effect in uterine fibroids can be visualized using IVIM perfusion fraction mapping, in moderate concordance with contrast enhanced MRI. IVIM perfusion fraction mapping has therefore the potential to serve as a contrast agent-free imaging method to visualize the MR-HIFU treatment progression in uterine fibroids.
Collapse
Affiliation(s)
- Derk J Slotman
- Department of Radiology, Isala Hospital, Zwolle, The Netherlands
- Imaging & Oncology Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lambertus W Bartels
- Imaging & Oncology Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ingrid M Nijholt
- Department of Radiology, Isala Hospital, Zwolle, The Netherlands
- Imaging & Oncology Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Imaging & Oncology Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Judith A F Huirne
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, The Netherlands
| | - Chrit T W Moonen
- Imaging & Oncology Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital, Zwolle, The Netherlands
- Imaging & Oncology Division, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Mattay RR, Kim K, Shah L, Shah B, Sugrue L, Safoora F, Ozhinsky E, Narsinh KH. MR Thermometry during Transcranial MR Imaging-Guided Focused Ultrasound Procedures: A Review. AJNR Am J Neuroradiol 2023; 45:1-8. [PMID: 38123912 PMCID: PMC10756580 DOI: 10.3174/ajnr.a8038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/04/2023] [Indexed: 12/23/2023]
Abstract
Interest in transcranial MR imaging-guided focused ultrasound procedures has recently grown. These incisionless procedures enable precise focal ablation of brain tissue using real-time monitoring by MR thermometry. This article will provide an updated review on clinically applicable technical underpinnings and considerations of proton resonance frequency MR thermometry, the most common clinically used MR thermometry sequence.
Collapse
Affiliation(s)
- Raghav R Mattay
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Kisoo Kim
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Lubdha Shah
- Department of Radiology and Neurosurgery (L. Shah), University of Utah, Salt Lake City, Utah
| | - Bhavya Shah
- Department of Radiology (B.S.), University of Texas Southwestern, Dallas, Texas
| | - Leo Sugrue
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
- Department of Psychiatry (L. Sugrue), University of California San Francisco, California
| | - Fatima Safoora
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Eugene Ozhinsky
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Kazim H Narsinh
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
- Department of Neurological Surgery (K.H.N.), University of California San Francisco, California
| |
Collapse
|
5
|
Slotman DJ, Bartels LW, Zijlstra A, Verpalen IM, van Osch JAC, Nijholt IM, Heijman E, van 't Veer-Ten Kate M, de Boer E, van den Hoed RD, Froeling M, Boomsma MF. Diffusion-weighted MRI with deep learning for visualizing treatment results of MR-guided HIFU ablation of uterine fibroids. Eur Radiol 2022; 33:4178-4188. [PMID: 36472702 DOI: 10.1007/s00330-022-09294-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES No method is available to determine the non-perfused volume (NPV) repeatedly during magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablations of uterine fibroids, as repeated acquisition of contrast-enhanced T1-weighted (CE-T1w) scans is inhibited by safety concerns. The objective of this study was to develop and test a deep learning-based method for translation of diffusion-weighted imaging (DWI) into synthetic CE-T1w scans, for monitoring MR-HIFU treatment progression. METHODS The algorithm was retrospectively trained and validated on data from 33 and 20 patients respectively who underwent an MR-HIFU treatment of uterine fibroids between June 2017 and January 2019. Postablation synthetic CE-T1w images were generated by a deep learning network trained on paired DWI and reference CE-T1w scans acquired during the treatment procedure. Quantitative analysis included calculation of the Dice coefficient of NPVs delineated on synthetic and reference CE-T1w scans. Four MR-HIFU radiologists assessed the outcome of MR-HIFU treatments and NPV ratio based on the synthetic and reference CE-T1w scans. RESULTS Dice coefficient of NPVs was 71% (± 22%). The mean difference in NPV ratio was 1.4% (± 22%) and not statistically significant (p = 0.79). Absolute agreement of the radiologists on technical treatment success on synthetic and reference CE-T1w scans was 83%. NPV ratio estimations on synthetic and reference CE-T1w scans were not significantly different (p = 0.27). CONCLUSIONS Deep learning-based synthetic CE-T1w scans derived from intraprocedural DWI allow gadolinium-free visualization of the predicted NPV, and can potentially be used for repeated gadolinium-free monitoring of treatment progression during MR-HIFU therapy for uterine fibroids. KEY POINTS • Synthetic CE-T1w scans can be derived from diffusion-weighted imaging using deep learning. • Synthetic CE-T1w scans may be used for visualization of the NPV without using a contrast agent directly after MR-HIFU ablations of uterine fibroids.
Collapse
Affiliation(s)
- Derk J Slotman
- Department of Radiology, Isala Hospital, Zwolle, The Netherlands.
- Imaging & Oncology Division, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Lambertus W Bartels
- Imaging & Oncology Division, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aylene Zijlstra
- Department of Radiology, Isala Hospital, Zwolle, The Netherlands
| | - Inez M Verpalen
- Department of Radiology, Isala Hospital, Zwolle, The Netherlands
- Department of Radiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Ingrid M Nijholt
- Department of Radiology, Isala Hospital, Zwolle, The Netherlands
| | - Edwin Heijman
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
- Philips Research Eindhoven, High Tech Campus, Eindhoven, The Netherlands
| | | | - Erwin de Boer
- Department of Radiology, Isala Hospital, Zwolle, The Netherlands
| | | | - Martijn Froeling
- Imaging & Oncology Division, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
6
|
Fite BZ, Wang J, Ghanouni P, Ferrara KW. A Review of Imaging Methods to Assess Ultrasound-Mediated Ablation. BME FRONTIERS 2022; 2022:9758652. [PMID: 35957844 PMCID: PMC9364780 DOI: 10.34133/2022/9758652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
Ultrasound ablation techniques are minimally invasive alternatives to surgical resection and have rapidly increased in use. The response of tissue to HIFU ablation differs based on the relative contributions of thermal and mechanical effects, which can be varied to achieve optimal ablation parameters for a given tissue type and location. In tumor ablation, similar to surgical resection, it is desirable to include a safety margin of ablated tissue around the entirety of the tumor. A factor in optimizing ablative techniques is minimizing the recurrence rate, which can be due to incomplete ablation of the target tissue. Further, combining focal ablation with immunotherapy is likely to be key for effective treatment of metastatic cancer, and therefore characterizing the impact of ablation on the tumor microenvironment will be important. Thus, visualization and quantification of the extent of ablation is an integral component of ablative procedures. The aim of this review article is to describe the radiological findings after ultrasound ablation across multiple imaging modalities. This review presents readers with a general overview of the current and emerging imaging methods to assess the efficacy of ultrasound ablative treatments.
Collapse
Affiliation(s)
- Brett Z. Fite
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | - James Wang
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | | |
Collapse
|