1
|
Simonovic M, Misic D, Kozomara R, Petkovic Curcin A, Jovic S, Brkic M, Pandzic D, Stosic S, Supic G. Potential impact of micro-196a2 and Toll-like receptor 2 gene polymorphisms on oral cancer prognosis and susceptibility. Arch Oral Biol 2025; 175:106271. [PMID: 40252477 DOI: 10.1016/j.archoralbio.2025.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/20/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
OBJECTIVE Despite advances in diagnosis and treatment in recent years, oral squamous cell carcinoma (OSCC) is still associated with a high recurrence rate and poor survival. MiR-196a2 and TLR2 have been implicated in cancer progression and prognosis, but the significance of their genetic variants in OSCC remains unelucidated. DESIGN This study investigated the miR-196a2 rs11614913 and TLR2 rs5743708 genetic variants in Caucasian HPV-negative OSCC patients (n = 95) and age- and sex-matched healthy controls (n = 108) using real-time PCR. An assessment was conducted on their association with clinicopathological features, overall survival (OS), recurrence-free survival (RFS) and OSCC risk. RESULTS OSCC patients carrying the miR-196a2 rs11614913 TT genotype had a higher risk of tumor recurrence (P = 0.045) and shorter RFS (P = 0.041). The proportional hazards assumption was violated for tumor stage. Stage-stratified Kaplan-Meier analysis showed that miR-196a2 rs11614913 genotypes and combined CC+CT vs. TT variants significantly affected RFS in stage I/II OSCC patients (P = 0.012 and P = 0.003, respectively), but not in advanced stage III/IV patients (P = 0.545 and P = 0.287, respectively). Cox regression confirmed miR-196a2 rs11614913 as an independent predictor of RFS in early stage (HR=3.407, P = 0.015), but not in advance stage patients (HR=1.090, P = 0.711). No significant associations with OS were found. Additionally, the TLR2 rs5743708 variant allele A was significantly associated with a lower risk of OSCC (Adjusted OR=0.406, P = 0.013). CONCLUSIONS These findings suggest that miR-196a2 rs11614913 could play a stage-dependent role in RFS, influencing early-stage OSCC but losing prognostic significance in advanced disease. Additionally, TLR2 rs5743708 may contribute to the decreased OSCC risk.
Collapse
Affiliation(s)
- Marko Simonovic
- Institute for Epidemiology, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia
| | - Debora Misic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia
| | - Ruzica Kozomara
- Clinic for Maxillofacial Surgery, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Belgrade 11000, Serbia
| | - Aleksandra Petkovic Curcin
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Belgrade 11000, Serbia
| | - Sasa Jovic
- Clinic for Maxillofacial Surgery, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Belgrade 11000, Serbia
| | - Marko Brkic
- Clinic for Maxillofacial Surgery, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia
| | - Dragan Pandzic
- Department for Maxillofacial Surgery, University Clinical Center of the Republika Srpska, Banja Luka, Bosnia and Herzegovina
| | - Srboljub Stosic
- Clinic for Maxillofacial Surgery, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Belgrade 11000, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Belgrade 11000, Serbia.
| |
Collapse
|
2
|
Zhou B, Mu K, Yu X, Chen X, Shi X. The effect of Licochalcone A on proliferation, invasion, and drug resistance of glioma cells by regulating TLR4/NF-κB signaling pathway. Clinics (Sao Paulo) 2024; 80:100542. [PMID: 39708583 PMCID: PMC11913795 DOI: 10.1016/j.clinsp.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/07/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVE Based on Toll Like Receptor 4 (TLR4)/Nuclear Factor-κB (NF-κB) Exploring the effects of Licochalcone A (LCA) on the proliferation, invasion, and drug resistance of glioma cells through signaling pathways. METHODS Cultivate human glioma cell line U251 in vitro, induce drug-resistant cell line U251/TMZ with Temozolomide (TMZ), and validate the results. Different concentrations of licorice chalcone A were used to treat U251 cells and U251/TMZ cells, and were named as control group, low-dose group, medium-dose group, and high-dose group, respectively. CCK-8 assay, cell adhesion assay, and Transwell assay were used to detect cell survival rate, cell adhesion rate, number of migrating cells, and number of invading cells, respectively. RESULTS The cell survival rate, cell adhesion rate, number of migrating and invading cells in the high-dose group were lower than those in the medium-dose group and lower than those in the control group. High-dose group TLR4, NF-κB mRNA and protein levels were lower than those in the medium dose group and lower than those in the control group (p < 0.05). Compared with the si-NC group, the si-TLR4 group showed a decrease in cell survival rate and adhesion rate, as well as a decrease in the number of migrating and invading cells, the levels of CyclinD1 and N-cadherin proteins decreased, while the levels of E-cadherin protein increased (p < 0.05). CONCLUSION LCA could inhibit the proliferation and metastasis of glioma cells and reverse drug resistance, possibly by inhibiting the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Baigui Zhou
- Department of Neurology, Zhejiang Jinhua Guangfu Tumor Hospital, Zhejiang, PR China.
| | - Kun Mu
- Department of Neurology, Zhejiang Jinhua Guangfu Tumor Hospital, Zhejiang, PR China
| | - Xuzhou Yu
- Department of Respiratory Oncology, Zhejiang Jinhua Guangfu Tumor Hospital, Zhejiang, PR China
| | - Xu Chen
- Department of Neurology, Zhejiang Jinhua Guangfu Tumor Hospital, Zhejiang, PR China
| | - Xiaoying Shi
- Department of Emergency, Zhejiang Jinhua Guangfu Tumor Hospital, Zhejiang, PR China
| |
Collapse
|
3
|
Yang Y, Cui H, Li D, Chen L, Liu Y, Zhou C, Li L, Feng M, Chen X, Cao Y, Gao Y. S100A8 promotes tumor progression by inducing phenotypic polarization of microglia through the TLR4/IL-10 signaling pathway in glioma. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:369-381. [PMID: 39735438 PMCID: PMC11674433 DOI: 10.1016/j.jncc.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 12/31/2024] Open
Abstract
Background S100A8 is a member of the S100 protein family and plays a pivotal role in regulating inflammation and tumor progression. This study aimed to comprehensively assess the expression patterns and functional roles of S100A8 in glioma progression. Methods Glioma tissues were collected from 98 patients who underwent surgical treatment at Fudan University Shanghai Cancer Center. S100A8 expression in glioma tissues was analyzed using immunohistochemistry (IHC) to establish its correlation with clinicopathological features in patients. The expression and prognostic effect of S100A8 in glioma were analyzed using TCGA and CGGA public databases. Then, we investigated the role of S100A8 in glioma through a series of in vivo and in vitro experiments including Transwell, wound healing, CCK8, and intracranial tumor models. Subsequently, bioinformatics analysis, single-cell sequencing and coimmunoprecipitation (Co-IP) were used to explore the underlying mechanism. Results S100A8 was upregulated in gliomas compared to paracancerous tissues, and this phenotype was significantly correlated with poor prognosis. Subgroup analysis showed that S100A8 expression was higher in the high-grade glioma (HGG) group than that in the low-grade glioma (LGG) group. S100A8 overexpression in glioma cell lines promoted cell proliferation, migration and invasion, while silencing S100A8 reversed these effects. In vivo experiments showed that S100A8 knockdown can significantly reduce the tumor burden of glioma cells. Notably, S100A8 was observed to stimulate microglial M2 polarization by interacting with TLR4, which subsequently induced NF-κB signaling and IL-10 secretion within the tumor microenvironment. Conclusions S100A8 promotes tumor progression by inducing phenotypic polarization of microglia through the TLR4/IL-10 signaling pathway in glioma. It might represent a therapeutic target for further basic research or clinical management of glioma.
Collapse
Affiliation(s)
- Yuechao Yang
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huanhuan Cui
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Liu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Changshuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Wang Y, Wu Y, Li L, Gao J, Gao DS, Sun S. GDNF triggers proliferation of rat C6 glioma cells via the NF-κB/CXCL1 signaling pathway. PLoS One 2023; 18:e0289071. [PMID: 37594930 PMCID: PMC10437914 DOI: 10.1371/journal.pone.0289071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/10/2023] [Indexed: 08/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor that is characterized by its high proliferative and migratory potential, leading to a high invasiveness of this tumor type. However, the underlying mechanism of GBM proliferation and migration has not been fully elucidated. In this study, at first, we used RNA-seq together with bioinformatics technology to screen for C-X-C motif ligand 1 (CXCL1) as a proliferation-related gene. And exogenous glial cell line-derived neurotrophic factor (GDNF) induced proliferation and up-regulated the level of CXCL1 in rat C6 glioma cells determined by sqPCR and ELISA. Then, we manipulated the CXCL1 expression by using a lentiviral vector (CXCL1-RNAi) approach. By this, the proliferation of C6 cells was decreased, suggesting that CXCL1 plays a key role in proliferation in these cells. We hypothesized that exogenous GDNF promoted NF-κB nuclear translocation and therefore, analyzed the interaction of CXCL1 with NF-κB by Western Blot and immunofluorescence. Additionally, we used BAY 11-7082, a phosphorylation inhibitor of NF-κB, to elucidate NF-κB mediated the effect of GDNF on CXCL1. These results demonstrated that GDNF enhanced the proliferation of rat C6 glioma cells through activating the NF-κB/CXCL1 signaling pathway. In summary, these studies not only revealed the mechanism of action of exogenous GDNF in promoting the proliferation of C6 glioma cells but may also provide a new biological target for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Yue Wang
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Wu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Li
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Gao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dian Shuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shen Sun
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Histology and Embryology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
Luo Z, Liu L, Li X, Chen W, Lu Z. Tat-NTS Suppresses the Proliferation, Migration and Invasion of Glioblastoma Cells by Inhibiting Annexin-A1 Nuclear Translocation. Cell Mol Neurobiol 2022; 42:2715-2725. [PMID: 34345995 PMCID: PMC11421625 DOI: 10.1007/s10571-021-01134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
Prevention of the nuclear translocation of ANXA1 with Tat-NTS was recently reported to alleviate neuronal injury and protect against cerebral stroke. However, the role that Tat-NTS plays in the occurrence and development of gliomas still needs to be elucidated. Therefore, human glioblastoma (GB) cells were treated with various concentrations of Tat-NTS for 24 h, and cell proliferation, migration and invasion were assessed with CCK-8 and Transwell assays. The nuclear translocation of ANXA1 was evaluated by subcellular extraction and immunofluorescence, and protein expression levels were detected by Western blot analysis. In addition, the activity of MMP-2/9 was measured by gelatin zymography. The results revealed that Tat-NTS significantly inhibited the nuclear translocation of ANXA1 in U87 cells and inhibited the proliferation, migration and invasion of GB cells. Tat-NTS also suppressed cell cycle regulatory proteins and MMP-2/-9 activity and expression. Moreover, Tat-NTS reduced the level of p-p65 NF-κB in U87 cells. These results suggest that the Tat-NTS-induced inhibition of GB cell proliferation, migration and invasion is closely associated with the induction of cell cycle arrest, downregulation of MMP-2/-9 expression and activity and suppression of the NF-κB signaling pathway. Thus, Tat-NTS may be a potential chemotherapeutic agent for the treatment of GB.
Collapse
Affiliation(s)
- Zhenzhao Luo
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Li Liu
- Department of Respiration, The Children's Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430015, China
| | - Xing Li
- Department of Neurobiology, The School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiqun Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China.
| |
Collapse
|
6
|
A System Bioinformatics Approach Predicts the Molecular Mechanism Underlying the Course of Action of Radix Salviae Reverses GBM Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1218969. [PMID: 35154340 PMCID: PMC8825271 DOI: 10.1155/2021/1218969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
Objective This study used in vitro techniques to investigate the therapeutic effect of Radix Salviae on human glioblastoma and decode its underlying molecular mechanism. Methods The active components and targets of the Radix Salviae were identified from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). The targets of human glioblastoma were obtained from the GeneCards Database. The Radix Salviae-mediated antiglioblastoma was evaluated by Gene Ontology (GO) analyses and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Finally, mechanism of action of Radix Salviae against human glioblastoma was deduced by molecular docking and experiments. Results We screened 66 active ingredients and 45 targets of the Radix Salviae. The enrichment analysis based on the targets mentioned above suggested a possible role in protein phosphorylation, cell transcription, apoptosis, and inflammatory factor signaling pathways. Further study demonstrated that cryptotanshinone, an essential component of Radix Salviae, played a significant role in killing human glioblastoma cells and protecting the body by inhibiting the AKT, IKB, and STAT3 signaling pathways. Conclusions Radix Salviae could inhibit the proliferation and invasion of human glioblastoma by regulating STAT3, Akt, and IKB signaling pathways. Radix Salviae has potential therapeutic value in the future for human glioblastoma.
Collapse
|
7
|
The Relationship between Torque teno Virus and TLR2 rs5743708 Polymorphism with Breast Cancer. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Ning J, Yang R, Wang H, Cui L. HMGB1 enhances chemotherapy resistance in multiple myeloma cells by activating the nuclear factor-κB pathway. Exp Ther Med 2021; 22:705. [PMID: 34007314 PMCID: PMC8120504 DOI: 10.3892/etm.2021.10137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy resistance is a main obstacle in the clinical chemotherapeutic treatment of multiple myeloma (MM). High-mobility group box 1 (HMGB1) has been revealed to be associated with the sensitivity of MM cells to chemotherapy, but how HMGB1 regulates chemotherapy resistance in MM has yet to be fully elucidated. In the present study, the exact molecular mechanism underlying HMGB1-mediated drug resistance in MM was explored using three chemotherapy-resistant MM cells (RPMI8226/ADR, RPMI8226/BOR and RPMI8226/DEX) that were successfully established. Reverse transcription-quantitative polymerase chain reaction revealed that the three chemotherapy-resistant MM cells exhibited a higher release of HMGB1 compared with the parental RPMI8226 cells. Interference with endogenous HMGB1 increased the sensitivity of drug-resistant MM cells to chemotherapy, which was supported by the low IC50 value and the enlargement of cell apoptosis. Furthermore, short hairpin (sh)RNA-transfected MM cells showed an obvious elevation in phosphorylated (p)-IKKα/β, p-IκBα and p-p65 in whole cell lysate and/or nucleus, and treatment of nuclear factor (NF)-κB activator reversed the effect of shHMGB1-mediated cell viability and apoptosis in MM cells. In conclusion, HMGB1 regulates drug resistance in MM cells by regulating NF-κB signaling pathway, suggesting that HMGB1 has the potential to serve as a target for MM treatment.
Collapse
Affiliation(s)
- Jing Ning
- Department of Hematology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Rui Yang
- Department of Hematology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hainan Wang
- Department of Hematology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Lijuan Cui
- Department of Hematology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
9
|
Aplastic anemia in a patient with CVID due to NFKB1 haploinsufficiency. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005769. [PMID: 32972988 PMCID: PMC7784489 DOI: 10.1101/mcs.a005769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Acquired aplastic anemia (AA) is a life-threatening bone marrow failure caused by an autoimmune cytotoxic T lymphocyte attack on hematopoietic stem and progenitor cells. Factors contributing to aberrant autoimmune activation in AA include a deficit of T regulatory cells and high levels of inflammatory cytokines. Several acquired conditions of immune dysregulation and genetic polymorphisms in inflammatory cytokines and human leukocyte antigen genes have been linked to an increased risk of AA. However, AA has not been reported in patients with Mendelian disorders of immune regulation. Here we report a patient with familial common variable immunodeficiency (CVID) caused by a pathogenic variant in NFKB1, who developed AA as an adult. The patient had a difficult clinical course and was unable to tolerate standard AA therapy with cyclosporine A and eltrombopag, with complications attributed in part to the effect of cyclosporine A on NF-κB signaling. Our case suggests a novel link between genetic disorders of immune regulation and AA and highlights the importance of recognizing inherited autoimmunity syndromes in AA patients for the selection of optimal therapy and prognostic counseling.
Collapse
|
10
|
Ni XR, Guo CC, Yu YJ, Yu ZH, Cai HP, Wu WC, Ma JX, Chen FR, Wang J, Chen ZP. Combination of levetiracetam and IFN-α increased temozolomide efficacy in MGMT-positive glioma. Cancer Chemother Pharmacol 2020; 86:773-782. [PMID: 33074386 DOI: 10.1007/s00280-020-04169-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Glioma, especially glioblastoma (GBM), is the most aggressive malignant brain tumor and its standard therapy is often ineffective because of temozolomide (TMZ) resistance. Reversal of the TMZ resistance might improve the prognosis of glioma patients. We previously found that interferon-α (IFN-α) and anti-epileptic drug levetiracetam (LEV) could sensitize glioma to TMZ, respectively. In this study, we further investigated the efficiency of combining of LEV and IFN-α for improving the efficacy of TMZ. METHODS We evaluated whether LEV and IFN-α could increase TMZ efficacy using colony formation assay and cell viability assay with MGMT-positive and MGMT-negative glioma cell lines in vitro. Subcutaneous xenografts and orthotopic xenografts mice models were used in vivo to observe the tumor growth and mice survival upon treatments with TMZ, TMZ + IFN-α, TMZ + LEV, or TMZ + LEV + IFN-α. The expression levels of MGMT, markers of pro-apoptotic and anti-apoptotic in tumor samples were analyzed by Western blotting. RESULTS The combinational use of IFN-α, LEV, and TMZ showed the best anti-tumor activity in MGMT-positive cell lines (U138, GSC-1, U118, and T98 G). TMZ + LEV + IFN-α further obviously increased TMZ + LEV or TMZ + IFN-α efficiency in MGMT-positive cell lines, while not in negative cell lines (SKMG-4, U87, U373, and U251) in vitro, which were also observed in subcutaneous mice models (U138, GSC-1 compared to SKMG-4, U87) and orthotopic models (GSC-1) in vivo. Strikingly, the combination of LEV and IFN-α together with TMZ significantly prolonged the survival of mice with orthotopic GSC-1 glioma. Furthermore, we confirmed that the combination of LEV and IFN-α enhanced the inhibition of MGMT and the activation of apoptosis in U138 tumor on the basis of TMZ treatment. CONCLUSIONS The combination use of LEV and IFN-α could be an optimal method to overcome TMZ resistance through obvious MGMT inhibition in MGMT-positive glioma.
Collapse
Affiliation(s)
- Xiang-Rong Ni
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Cheng-Cheng Guo
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Yan-Jiao Yu
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Zhi-Hui Yu
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Hai-Ping Cai
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Wei-Chi Wu
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Jun-Xiao Ma
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Fu-Rong Chen
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Jing Wang
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China.
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China.
| |
Collapse
|
11
|
-196 to -174del, rs4696480, rs3804099 polymorphisms of Toll-like receptor 2 gene impact the susceptibility of cancers: evidence from 37053 subjects. Biosci Rep 2020; 39:221065. [PMID: 31710083 PMCID: PMC6900473 DOI: 10.1042/bsr20191698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Relationship between Toll-like receptor-2 (TLR2) and cancer risk has been illustrated in some studies, but their conclusions are inconsistent. Therefore, we designed this meta-analysis to explore a more accurate conclusion of whether TLR2 affects cancer risks. Articles were retrieved from various literature databases according to the criteria. We used STATA to calculate the odds ratio (OR) and 95% confidence interval (95% CI) to evaluate the relationship between certain polymorphism of TLR2 and cancer risk. Finally, 47 case-control studies met the criteria, comprising 15851 cases and 21182 controls. In the overall analysis, people are more likely to get cancer because of -196 to -174del in TLR2 in all five genetic models, B vs. A (OR = 1.468, 95% Cl = 1.129-1.91, P=0.005); BB vs. AA (OR = 1.716, 95% Cl = 1.178-2.5, P=0.005); BA vs. AA (OR = 1.408, 95% Cl = 1.092-1.816, P=0.008); BB+BA vs. AA (OR = 1.449, 95% Cl = 1.107-1.897, P=0.007); BB vs. BA+AA (OR = 1.517, 95% Cl = 1.092-2.107, P=0.013). Meanwhile, rs4696480 could significantly increase the risk of cancer in Caucasians, furthermore, rs3804099 significantly decreased cancer risk in overall analysis, but more subjects are necessary to confirm the results. All in all, this meta-analysis revealed that not only -196 to -174del increased the risk of among overall cancers, Caucasians are more likely to get cancer because of rs4696480, while rs3804099 polymorphism could reduce the risk of cancer in some genetic models. There is no direct evidence showing that rs5743708, rs3804100 and rs1898830 are related to cancer.
Collapse
|
12
|
Functional variations of NFKB1 and NFKB1A in inflammatory disorders and their implication for therapeutic approaches. ASIAN BIOMED 2020. [DOI: 10.1515/abm-2020-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) is a sophisticated transcription factor that is particularly important in the inflammatory response, but it regulates more than 400 individual and dependent genes for parts of the apoptotic, angiogenic, and proliferative, differentiative, and cell adhesion pathways. NF-κB function is directly inhibited by the binding of inhibitor of κB (IκB), and the imbalance between NF-κB and IκB has been linked to the development and progression of cancer and a variety of inflammatory disorders. These observations might broaden the horizon of current knowledge, particularly on the pathogenesis of inflammatory diseases considering the roles of NF-κB and IκB. In this context, we focus this narrative review on a comparative discussion of our findings with other literature regarding variations of NFKB1 and NFKB1A and their association with susceptibility to widespread inflammatory disorders (such as atherosclerosis, morbid obesity, Behçet syndrome, Graves disease, Hashimoto disease) and common cancers (such as gliomas).
Collapse
|
13
|
Litak J, Grochowski C, Litak J, Osuchowska I, Gosik K, Radzikowska E, Kamieniak P, Rolinski J. TLR-4 Signaling vs. Immune Checkpoints, miRNAs Molecules, Cancer Stem Cells, and Wingless-Signaling Interplay in Glioblastoma Multiforme-Future Perspectives. Int J Mol Sci 2020; 21:ijms21093114. [PMID: 32354122 PMCID: PMC7247696 DOI: 10.3390/ijms21093114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like-receptor (TLR) family members were detected in the central nervous system (CNS). TLR occurrence was noticed and widely described in glioblastomamultiforme (GBM) cells. After ligand attachment, TLR-4 reorients domains and dimerizes, activates an intracellular cascade, and promotes further cytoplasmatic signaling. There is evidence pointing at a strong relation between TLR-4 signaling and micro ribonucleic acid (miRNA) expression. The TLR-4/miRNA interplay changes typical signaling and encourages them to be a target for modern immunotherapy. TLR-4 agonists initiate signaling and promote programmed death ligand-1 (PD-1L) expression. Most of those molecules are intensively expressed in the GBM microenvironment, resulting in the autocrine induction of regional immunosuppression. Another potential target for immunotreatment is connected with limited TLR-4 signaling that promotes Wnt/DKK-3/claudine-5 signaling, resulting in a limitation of GBM invasiveness. Interestingly, TLR-4 expression results in bordering proliferative trends in cancer stem cells (CSC) and GBM. All of these potential targets could bring new hope for patients suffering from this incurable disease. Clinical trials concerning TLR-4 signaling inhibition/promotion in many cancers are recruiting patients. There is still a lot to do in the field of GBM immunotherapy.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Laboratory of Virtual Man, Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Correspondence:
| | - Joanna Litak
- St. John‘s Cancer Center in Lublin, 20-090 Lublin, Poland
| | - Ida Osuchowska
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Krzysztof Gosik
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Piotr Kamieniak
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jacek Rolinski
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
14
|
Kernel Differential Subgraph Analysis to Reveal the Key Period Affecting Glioblastoma. Biomolecules 2020; 10:biom10020318. [PMID: 32079293 PMCID: PMC7072688 DOI: 10.3390/biom10020318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is a fast-growing type of malignant primary brain tumor. To explore the mechanisms in GBM, complex biological networks are used to reveal crucial changes among different biological states, which reflect on the development of living organisms. It is critical to discover the kernel differential subgraph (KDS) that leads to drastic changes. However, identifying the KDS is similar to the Steiner Tree problem that is an NP-hard problem. In this paper, we developed a criterion to explore the KDS (CKDS), which considered the connectivity and scale of KDS, the topological difference of nodes and function relevance between genes in the KDS. The CKDS algorithm was applied to simulated datasets and three single-cell RNA sequencing (scRNA-seq) datasets including GBM, fetal human cortical neurons (FHCN) and neural differentiation. Then we performed the network topology and functional enrichment analyses on the extracted KDSs. Compared with the state-of-art methods, the CKDS algorithm outperformed on simulated datasets to discover the KDSs. In the GBM and FHCN, seventeen genes (one biomarker, nine regulatory genes, one driver genes, six therapeutic targets) and KEGG pathways in KDSs were strongly supported by literature mining that they were highly interrelated with GBM. Moreover, focused on GBM, there were fifteen genes (including ten regulatory genes, three driver genes, one biomarkers, one therapeutic target) and KEGG pathways found in the KDS of neural differentiation process from activated neural stem cells (aNSC) to neural progenitor cells (NPC), while few genes and no pathway were found in the period from NPC to astrocytes (Ast). These experiments indicated that the process from aNSC to NPC is a key differentiation period affecting the development of GBM. Therefore, the CKDS algorithm provides a unique perspective in identifying cell-type-specific genes and KDSs.
Collapse
|
15
|
Shaji SK, Sunilkumar D, Mahalakshmi NV, Kumar GB, Nair BG. Analysis of microarray data for identification of key microRNA signatures in glioblastoma multiforme. Oncol Lett 2019; 18:1938-1948. [PMID: 31423264 PMCID: PMC6614686 DOI: 10.3892/ol.2019.10521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most malignant types of glioma known for its reduced survival rate and rapid relapse. Previous studies have shown that the expression patterns of different microRNAs (miRNA/miR) play a crucial role in the development and progression of GBM. In order to identify potential miRNA signatures of GBM for prognostic and therapeutic purposes, we downloaded and analyzed two expression data sets from Gene Expression Omnibus profiling miRNA patterns of GBM compared with normal brain tissues. Validated targets of the deregulated miRNAs were identified using MirTarBase, and were mapped to Search Tool for the Retrieval of Interacting Genes/Proteins, Database for Annotation, Visualization and Integrated Discovery and Kyoto Encyclopedia of Genes and Genomes databases in order to construct interaction networks and identify enriched pathways of target genes. A total of 6 miRNAs were found to be deregulated in both expression datasets studied. Pathway analysis demonstrated that most of the target genes were enriched in signaling cascades connected to cancer development, such as ‘Pathways in cancer’, ‘Focal adhesion’ and ‘PI3K-Akt signaling pathway’. Of the five target genes that were enriched in the glioblastoma pathway, in the WikiPathway database, both HRas proto-oncogene, GTPase and MET proto-oncogene, receptor tyrosine kinase target genes of hsa-miR-139-5p, were found to be significantly associated with patient survival. The present study may thus form the basis for further exploration of hsa-miR-139-5p, not only as a therapeutic agent, but also as a diagnostic biomarker for GBM as well as a predictive marker for patient survival.
Collapse
Affiliation(s)
- Sanu K Shaji
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - Damu Sunilkumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - N V Mahalakshmi
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - Geetha B Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| |
Collapse
|