1
|
Vaajala M, Liukkonen R, Kuitunen I, Ponkilainen V, Kekki M, Mattila VM. Multifetal gestations after traumatic brain injury: a nationwide register-based cohort study in Finland. BMC Pregnancy Childbirth 2023; 23:228. [PMID: 37016336 PMCID: PMC10074790 DOI: 10.1186/s12884-023-05539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/22/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND There is a paucity of information regarding the association between traumatic brain injuries (TBIs) and subsequent multifetal gestations. Since TBIs are known to negatively affect the neuroendocrine system, we hypothesized that the functions of the whole reproductive system might be disturbed as a result. The aim of this study is to determine the association between previous TBIs and the risk of multifetal gestations using nationwide registers. METHODS In this retrospective register-based cohort study, data from the National Medical Birth Register (MBR) were combined with data from the Care Register for Health Care. All fertile-aged women (15-49 years) who had sustained a TBI before pregnancy were included in the patient group. Women with prior fractures of the upper extremity, pelvis, and lower extremity were included in the control group. A logistic regression model was used to assess the risk for multifetal gestation after TBI. Odds ratios (ORs) and adjusted odds ratios (aOR) with 95% confidence intervals (CIs) between the groups were compared. The model was adjusted by maternal age and maternal BMI during pregnancy and previous births. The risk for multifetal gestations were evaluated during different periods following the injury (0-3 years, 3-6 years, 6-9 years, and 9 + years). RESULTS A total of 14 153 pregnancies occurred after the mother had sustained a TBI, and 23 216 pregnancies occurred after the mother had sustained fractures of the upper extremity, pelvis, or lower extremity. Of these, 201 (1.4%) women had multifetal gestations after TBI and 331 (1.4%) women had multifetal gestations after fractures of the upper extremity, pelvis, or lower extremity. Interestingly, the total odds of multifetal gestations were not higher after TBI when compared to fractures of the upper extremity, pelvis, and lower extremity (aOR 1.04, CI 0.86-1.24). The odds were highest at 6-9 years (aOR 1.54, 1.03-2.29) and lowest at 0-3 years (aOR 0.84, CI 0.59-1.18). CONCLUSION The risk for multifetal gestations after TBIs was not higher than after the other traumas included in this study. Our results provide good baseline information on the effects of TBIs on the risk for multifetal gestations, but further research is required on this topic.
Collapse
Affiliation(s)
- Matias Vaajala
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.
| | - Rasmus Liukkonen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Ilari Kuitunen
- Department of Pediatrics, Mikkeli Central Hospital, Mikkeli, Finland
- Institute of Clinical Medicine and Department of Pediatrics, University of Eastern Finland, Kuopio, Finland
| | - Ville Ponkilainen
- Department of Surgery, Central Finland Central Hospital Nova, Jyväskylä, Finland
| | - Maiju Kekki
- Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ville M Mattila
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Department of Orthopaedics and Traumatology, Tampere University Hospital Tampere, Tampere, Finland
| |
Collapse
|
2
|
McLoughlin RJ, Lu Z, Warneryd AC, Swanson RL. A Systematic Review of Testosterone Therapy in Men With Spinal Cord Injury or Traumatic Brain Injury. Cureus 2023; 15:e34264. [PMID: 36855479 PMCID: PMC9968415 DOI: 10.7759/cureus.34264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Spinal cord injuries (SCI) and traumatic brain injuries (TBI) increase the risk of testosterone deficiency and result in adverse changes in body composition and poor functional outcomes. The current systematic review aims to provide insights into the use of testosterone therapy for treating men with SCI and TBI. The PubMed and EMBASE databases were systematically reviewed using appropriate terms, and resulting manuscripts were screened using defined Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The patient population included male patients with SCI or TBI. Further inclusion criteria were: a) human participants 18 years of age or older; b) manuscript published in English; c) study included an intervention with exogenous testosterone; and d) articles published in peer-reviewed journals with full text available. Two reviewers independently extracted data regarding injury type, intervention, and outcomes. Following screening for inclusion/exclusion criteria, a total of 12 primary research studies conducted over the last 30 years were included. Men with SCI were investigated in 11 articles. The combination of testosterone patches and resistance training with functional electrical stimulation (FES) for 16 weeks in men with SCI and an average baseline testosterone level above the cutoff for testosterone deficiency increased muscle mass, strength, bone quality, and basal metabolic rate while testosterone patches without exercise for 16 weeks produced no significant changes in these parameters. Testosterone patches for 12 months in men with SCI and testosterone deficiency also increased lean tissue mass (LTM) and resting energy expenditure (REE). In one study, men with TBI and testosterone deficiency receiving testosterone gel for eight weeks showed a non-statistically significant greater absolute change in functional independence measure (FIM) and grip strength compared to a placebo group. Testosterone therapy with exercise may help improve muscle mass, bone health, strength, energy expenditure, and cardiac health in men with SCI without major side effects. It is difficult to draw conclusions regarding the effects of testosterone therapy in men with TBI based on the limited available evidence. Further investigation is warranted to explore the relationship between testosterone therapy and recovery after SCI and TBI.
Collapse
Affiliation(s)
- Ryan J McLoughlin
- Physical Medicine and Rehabilitation, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Zhiye Lu
- Physical Medicine and Rehabilitation, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Amelie C Warneryd
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, USA
| | - Randel L Swanson
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA (Veteran Affairs) Medical Center, Philadelphia, USA.,Physical Medicine and Rehabilitation, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| |
Collapse
|
3
|
Geddes RI, Kapoor A, Hayashi K, Rauh R, Wehber M, Bongers Q, Jansen AD, Anderson IM, Farquhar G, Vadakkadath‐Meethal S, Ziegler TE, Atwood CS. Hypogonadism induced by surgical stress and brain trauma is reversed by human chorionic gonadotropin in male rats: A potential therapy for surgical and TBI-induced hypogonadism? Endocrinol Diabetes Metab 2021; 4:e00239. [PMID: 34277964 PMCID: PMC8279618 DOI: 10.1002/edm2.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/14/2020] [Accepted: 01/16/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Hypogonadotropic hypogonadism (HH) is an almost universal, yet underappreciated, endocrinological complication of traumatic brain injury (TBI). The goal of this study was to determine whether the developmental hormone human chorionic gonadotropin (hCG) treatment could reverse HH induced by a TBI. METHODS Plasma samples were collected at post-surgery/post-injury (PSD/PID) days -10, 1, 11, 19 and 29 from male Sprague-Dawley rats (5- to 6-month-old) that had undergone a Sham surgery (craniectomy alone) or CCI injury (craniectomy + bilateral moderate-to-severe CCI injury) and treatment with saline or hCG (400 IU/kg; i.m.) every other day. RESULTS Both Sham and CCI injury significantly decreased circulating testosterone (T), 11-deoxycorticosterone (11-DOC) and corticosterone concentrations to a similar extent (79.1% vs. 80.0%; 46.6% vs. 48.4%; 56.2% vs. 32.5%; respectively) by PSD/PID 1. hCG treatment returned circulating T to baseline concentrations by PSD/PID 1 (8.9 ± 1.5 ng/ml and 8.3 ± 1.9 ng/ml; respectively) and was maintained through PSD/PID 29. hCG treatment significantly, but transiently, increased circulating progesterone (P4) ~3-fold (30.2 ± 10.5 ng/ml and 24.2 ± 5.8 ng/ml) above that of baseline concentrations on PSD 1 and PID 1, respectively. hCG treatment did not reverse hypoadrenalism following either procedure. CONCLUSIONS Together, these data indicate that (1) craniectomy is sufficient to induce persistent hypogonadism and hypoadrenalism, (2) hCG can reverse hypogonadism induced by a craniectomy or craniectomy +CCI injury, suggesting that (3) craniectomy and CCI injury induce a persistent hypogonadism by decreasing hypothalamic and/or pituitary function rather than testicular function in male rats. The potential role of hCG as a cheap, safe and readily available treatment for reversing surgery or TBI-induced hypogonadism is discussed.
Collapse
Affiliation(s)
- Rastafa I. Geddes
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Amita Kapoor
- Assay Services Unit and Institute for Clinical and Translational Research Core LaboratoryNational Primate Research CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Kentaro Hayashi
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Ryan Rauh
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Marlyse Wehber
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Quinn Bongers
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Alex D. Jansen
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Icelle M. Anderson
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Gabrielle Farquhar
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Sivan Vadakkadath‐Meethal
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Toni E. Ziegler
- Assay Services Unit and Institute for Clinical and Translational Research Core LaboratoryNational Primate Research CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Craig S. Atwood
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
- Geriatric Research, Education and Clinical CenterVeterans Administration HospitalMadisonWIUSA
- School of Exercise, Biomedical and Health SciencesEdith Cowan UniversityJoondalupAustralia
| |
Collapse
|
4
|
Kövesdi E, Szabó-Meleg E, Abrahám IM. The Role of Estradiol in Traumatic Brain Injury: Mechanism and Treatment Potential. Int J Mol Sci 2020; 22:E11. [PMID: 33374952 PMCID: PMC7792596 DOI: 10.3390/ijms22010011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Patients surviving traumatic brain injury (TBI) face numerous neurological and neuropsychological problems significantly affecting their quality of life. Extensive studies over the past decades have investigated pharmacological treatment options in different animal models, targeting various pathological consequences of TBI. Sex and gender are known to influence the outcome of TBI in animal models and in patients, respectively. Apart from its well-known effects on reproduction, 17β-estradiol (E2) has a neuroprotective role in brain injury. Hence, in this review, we focus on the effect of E2 in TBI in humans and animals. First, we discuss the clinical classification and pathomechanism of TBI, the research in animal models, and the neuroprotective role of E2. Based on the results of animal studies and clinical trials, we discuss possible E2 targets from early to late events in the pathomechanism of TBI, including neuroinflammation and possible disturbances of the endocrine system. Finally, the potential relevance of selective estrogenic compounds in the treatment of TBI will be discussed.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pecs, Hungary;
| | - István M. Abrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| |
Collapse
|
5
|
Ripley DL, Gerber D, Pretz C, Weintraub AH, Wierman ME. Testosterone replacement in hypogonadal men during inpatient rehabilitation following traumatic brain injury: Results from a double-blind, placebo-controlled clinical pilot study. NeuroRehabilitation 2020; 46:355-368. [PMID: 32250330 DOI: 10.3233/nre-192992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Endocrinopathy, including hypogonadism, is common following traumatic brain injury (TBI). Prior evidence suggests hypogonadism is associated with poorer function. OBJECTIVE Determine the feasibility, safety, and efficacy of testosterone (T) therapy in hypogonadal men following TBI in acute rehabilitation. DESIGN Randomized, double blind, placebo-controlled pilot trial. SETTING Inpatient rehabilitation brain injury unit. PARTICIPANTS Men ages 18 -65, post moderate to severe TBI receiving inpatient rehabilitation. INTERVENTIONS Transdermal T gel or placebo. MAIN OUTCOME MEASURES Revised FIM™ score, strength, adverse events. RESULTS Of 498 screened, 70 participants were enrolled, and 22 meeting all criteria were randomized into placebo (n = 10) or physiologic T therapy (n = 12). There was no significant difference between groups in rate of improvement on the FIM™ (intercepts t = -0.31, p = 0.7593, or slopes t = 0.61, p = 0.5472). The Treatment group demonstrated the greatest absolute improvement in FIM™ scores and grip strength compared to Placebo or Normal T groups. There was no difference in adverse events between groups. Percentage of time with agitation or aggression was highest in the Placebo group. CONCLUSIONS Although there were no significant differences in rates of recovery, treatment group subjects showed greater absolute functional and strength improvement compared to the Placebo or Normal T groups.
Collapse
Affiliation(s)
- David L Ripley
- Shirley Ryan Ability Lab, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | - Margaret E Wierman
- Department of Medicine, University of Colorado Anschutz Medical Campus, and Rocky Mountain Regional Veterans Affairs Research Service, Aurora, CO, USA
| |
Collapse
|
6
|
Vijapur SM, Yang Z, Barton DJ, Vaughan L, Awan N, Kumar RG, Oh BM, Berga SL, Wang KK, Wagner AK. Anti-Pituitary and Anti-Hypothalamus Autoantibody Associations with Inflammation and Persistent Hypogonadotropic Hypogonadism in Men with Traumatic Brain Injury. J Neurotrauma 2020; 37:1609-1626. [PMID: 32111134 DOI: 10.1089/neu.2019.6780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) and can lead to persistent hypogonadotropic hypogonadism (PHH) and poor outcomes. We hypothesized that autoimmune and inflammatory mechanisms contribute to PHH pathogenesis. Men with moderate-to-severe TBI (n = 143) were compared with healthy men (n = 39). The TBI group provided blood samples 1-12 months post-injury (n = 1225). TBI and healthy control (n = 39) samples were assayed for testosterone (T) and luteinizing hormone (LH) to adjudicate PHH status. TBI samples 1-6 months post-injury and control samples were assayed for immunoglobulin M (IgM)/immunoglobulin G (IgG) anti-pituitary autoantibodies (APA) and anti-hypothalamus autoantibodies (AHA). Tissue antigen specificity for APA and AHA was confirmed via immunohistochemistry (IHC). IgM and IgG autoantibodies for glial fibrillary acid protein (GFAP) (AGA) were evaluated to gauge APA and AHA production as a generalized autoimmune response to TBI and to evaluate the specificity of APA and AHA to PHH status. An inflammatory marker panel was used to assess relationships to autoantibody profiles and PHH status. Fifty-one men with TBI (36%) had PHH. An age-related decline in T levels by both TBI and PHH status were observed. Injured men had higher APA IgM, APA IgG, AHA IgM, AHA IgG, AGA IgM, and AGA IgG than controls (p < 0.0001 all comparisons). However, only APA IgM (p = 0.03) and AHA IgM (p = 0.03) levels were lower in the PHH than in the non-PHH group in multivariate analysis. There were no differences in IgG levels by PHH status. Multiple inflammatory markers were positively correlated with IgM autoantibody production. PHH was associated with higher soluble tumor-necrosis-factor receptors I/II, (sTNFRI, sTNFRII), regulated on activation, normal T-cell expressed and secreted (RANTES) and soluble interleukin-2-receptor-alpha (sIL-2Rα) levels. Higher IgM APA, and AHA, but not AGA, in the absence of PHH may suggest a beneficial or reparative role for neuroendocrine tissue-specific IgM autoantibody production against PHH development post-TBI.
Collapse
Affiliation(s)
- Sushupta M Vijapur
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida / South Georgia Veterans Health System, Gainesville, Florida, USA.,Department of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - David J Barton
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Leah Vaughan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nabil Awan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Raj G Kumar
- Mount Sinai, Icahn School of Medicine, New York, New York, USA
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University, Seoul, South Korea
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Kevin K Wang
- Department of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA.,Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy K Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Clinical and Translational Science Institute, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Gupte R, Brooks W, Vukas R, Pierce J, Harris J. Sex Differences in Traumatic Brain Injury: What We Know and What We Should Know. J Neurotrauma 2019; 36:3063-3091. [PMID: 30794028 PMCID: PMC6818488 DOI: 10.1089/neu.2018.6171] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is growing recognition of the problem of male bias in neuroscience research, including in the field of traumatic brain injury (TBI) where fewer women than men are recruited to clinical trials and male rodents have predominantly been used as an experimental injury model. Despite TBI being a leading cause of mortality and disability worldwide, sex differences in pathophysiology and recovery are poorly understood, limiting clinical care and successful drug development. Given growing interest in sex as a biological variable affecting injury outcomes and treatment efficacy, there is a clear need to summarize sex differences in TBI. This scoping review presents an overview of current knowledge of sex differences in TBI and a comparison of human and animal studies. We found that overall, human studies report worse outcomes in women than men, whereas animal studies report better outcomes in females than males. However, closer examination shows that multiple factors including injury severity, sample size, and experimental injury model may differentially interact with sex to affect TBI outcomes. Additionally, we explore how sex differences in mitochondrial structure and function might contribute to possible sex differences in TBI outcomes. We propose recommendations for future investigations of sex differences in TBI, which we hope will lead to improved patient management, prognosis, and translation of therapies from bench to bedside.
Collapse
Affiliation(s)
- Raeesa Gupte
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - William Brooks
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
- Hoglund Brain Center, University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Clinical and Translational Sciences Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Rachel Vukas
- School of Medicine, Dykes Library of Health Sciences, University of Kansas Medical Center, Kansas City, Kansas
| | - Janet Pierce
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Janna Harris
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
- Hoglund Brain Center, University of Kansas Medical Center, Kansas City, Kansas
- Address correspondence to: Janna Harris, PhD, Hoglund Brain Imaging Center, MS 1052, 3901 Rainbow Boulevard, Kansas City, KS 66160
| |
Collapse
|
8
|
Fortress AM, Avcu P, Wagner AK, Dixon CE, Pang KCH. Experimental traumatic brain injury results in estrous cycle disruption, neurobehavioral deficits, and impaired GSK3β/β-catenin signaling in female rats. Exp Neurol 2019; 315:42-51. [PMID: 30710530 DOI: 10.1016/j.expneurol.2019.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022]
Abstract
An estimated 2.8 million traumatic brain injuries (TBI) occur within the United States each year. Approximately 40% of new TBI cases are female, however few studies have investigated the effects of TBI on female subjects. In addition to typical neurobehavioral sequelae observed after TBI, such as poor cognition, impaired behavior, and somatic symptoms, women with TBI report amenorrhea or irregular menstrual cycles suggestive of disruptions in the hypothalamic-pituitary-gonadal (HPG) axis. HPG dysfunction following TBI has been linked to poor functional outcome in men and women, but the mechanisms by which this may occur or relate to behavior has not been fully developed or ascertained. The present study determined if TBI resulted in HPG axis perturbations in young adult female Sprague Dawley rats, and whether TBI was associated with cognitive and sensorimotor deficits. Following lateral fluid percussion injury, injured females spent significantly more time in diestrus compared to sham females, consistent with a persistent low sex-steroid hormone state. Injured females displayed significantly reduced 17β-estradiol (E2) and luteinizing hormone levels. Concomitantly, injured females were impaired in spatial working memory compared to shams. Impaired GSK3β/β-catenin signaling related to synaptic changes was evident one-week post-injury in the hippocampus among injured females compared to sham females, and this impairment paralleled the deficits in spatial working memory. Sensorimotor function, as evidenced by suppression of the acoustic startle response, was chronically impaired even after normal estrous cycling resumed. These data demonstrate that TBI results in estrous cycle impairments, memory dysfunction, and perturbations in GSK3β/β-catenin signaling, suggesting a potential mechanism for HPG-mediated cognitive impairment following TBI.
Collapse
Affiliation(s)
- Ashley M Fortress
- NeuroBehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, USA; VA Pittsburgh Healthcare System, Mailstop 151, University Drive C, Pittsburgh, PA 15240, USA.
| | - Pelin Avcu
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, 65 Bergen Street, Newark, NJ 07103, USA
| | - Amy K Wagner
- Safar Center for Resuscitation Research, Center for Neuroscience, 3471 Fifth Avenue Suite 202, Kaufman BuildingUniversity of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - C Edward Dixon
- VA Pittsburgh Healthcare System, Mailstop 151, University Drive C, Pittsburgh, PA 15240, USA; Safar Center for Resuscitation Research, Center for Neuroscience, 3471 Fifth Avenue Suite 202, Kaufman BuildingUniversity of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kevin C H Pang
- NeuroBehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, USA; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, 65 Bergen Street, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Science, Newark, NJ, USA.
| |
Collapse
|
9
|
Persistent Hypogonadotropic Hypogonadism in Men After Severe Traumatic Brain Injury: Temporal Hormone Profiles and Outcome Prediction. J Head Trauma Rehabil 2018; 31:277-87. [PMID: 26360007 DOI: 10.1097/htr.0000000000000188] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To (1) examine relationships between persistent hypogonadotropic hypogonadism (PHH) and long-term outcomes after severe traumatic brain injury (TBI); and (2) determine whether subacute testosterone levels can predict PHH. SETTING Level 1 trauma center at a university hospital. PARTICIPANTS Consecutive sample of men with severe TBI between 2004 and 2009. DESIGN Prospective cohort study. MAIN MEASURES Post-TBI blood samples were collected during week 1, every 2 weeks until 26 weeks, and at 52 weeks. Serum hormone levels were measured, and individuals were designated as having PHH if 50% or more of samples met criteria for hypogonadotropic hypogonadism. At 6 and 12 months postinjury, we assessed global outcome, disability, functional cognition, depression, and quality of life. RESULTS We recruited 78 men; median (interquartile range) age was 28.5 (22-42) years. Thirty-four patients (44%) had PHH during the first year postinjury. Multivariable regression, controlling for age, demonstrated PHH status predicted worse global outcome scores, more disability, and reduced functional cognition at 6 and 12 months post-TBI. Two-step testosterone screening for PHH at 12 to 16 weeks postinjury yielded a sensitivity of 79% and specificity of 100%. CONCLUSION PHH status in men predicts poor outcome after severe TBI, and PHH can accurately be predicted at 12 to 16 weeks.
Collapse
|
10
|
Geddes RI, Hayashi K, Bongers Q, Wehber M, Anderson IM, Jansen AD, Nier C, Fares E, Farquhar G, Kapoor A, Ziegler TE, VadakkadathMeethal S, Bird IM, Atwood CS. Conjugated Linoleic Acid Administration Induces Amnesia in Male Sprague Dawley Rats and Exacerbates Recovery from Functional Deficits Induced by a Controlled Cortical Impact Injury. PLoS One 2017; 12:e0169494. [PMID: 28125600 PMCID: PMC5268708 DOI: 10.1371/journal.pone.0169494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/16/2016] [Indexed: 12/05/2022] Open
Abstract
Long-chain polyunsaturated fatty acids like conjugated linoleic acids (CLA) are required for normal neural development and cognitive function and have been ascribed various beneficial functions. Recently, oral CLA also has been shown to increase testosterone (T) biosynthesis, which is known to diminish traumatic brain injury (TBI)-induced neuropathology and reduce deficits induced by stroke in adult rats. To test the impact of CLA on cognitive recovery following a TBI, 5-6 month old male Sprague Dawley rats received a focal injury (craniectomy + controlled cortical impact (CCI; n = 17)) or Sham injury (craniectomy alone; n = 12) and were injected with 25 mg/kg body weight of Clarinol® G-80 (80% CLA in safflower oil; n = 16) or saline (n = 13) every 48 h for 4 weeks. Sham surgery decreased baseline plasma progesterone (P4) by 64.2% (from 9.5 ± 3.4 ng/mL to 3.4 ± 0.5 ng/mL; p = 0.068), T by 74.6% (from 5.9 ± 1.2 ng/mL to 1.5 ± 0.3 ng/mL; p < 0.05), 11-deoxycorticosterone (11-DOC) by 37.5% (from 289.3 ± 42.0 ng/mL to 180.7 ± 3.3 ng/mL), and corticosterone by 50.8% (from 195.1 ± 22.4 ng/mL to 95.9 ± 2.2 ng/mL), by post-surgery day 1. CCI injury induced similar declines in P4, T, 11-DOC and corticosterone (58.9%, 74.6%, 39.4% and 24.6%, respectively) by post-surgery day 1. These results suggest that both Sham surgery and CCI injury induce hypogonadism and hypoadrenalism in adult male rats. CLA treatment did not reverse hypogonadism in Sham (P4: 2.5 ± 1.0 ng/mL; T: 0.9 ± 0.2 ng/mL) or CCI-injured (P4: 2.2 ± 0.9 ng/mL; T: 1.0 ± 0.2 ng/mL, p > 0.05) animals by post-injury day 29, but rapidly reversed by post-injury day 1 the hypoadrenalism in Sham (11-DOC: 372.6 ± 36.6 ng/mL; corticosterone: 202.6 ± 15.6 ng/mL) and CCI-injured (11-DOC: 384.2 ± 101.3 ng/mL; corticosterone: 234.6 ± 43.8 ng/mL) animals. In Sham surgery animals, CLA did not alter body weight, but did markedly increase latency to find the hidden Morris Water Maze platform (40.3 ± 13.0 s) compared to saline treated Sham animals (8.8 ± 1.7 s). In CCI injured animals, CLA did not alter CCI-induced body weight loss, CCI-induced cystic infarct size, or deficits in rotarod performance. However, like Sham animals, CLA injections exacerbated the latency of CCI-injured rats to find the hidden MWM platform (66.8 ± 10.6 s) compared to CCI-injured rats treated with saline (30.7 ± 5.5 s, p < 0.05). These results indicate that chronic treatment of CLA at a dose of 25 mg/kg body weight in adult male rats over 1-month 1) does not reverse craniectomy- and craniectomy + CCI-induced hypogonadism, but does reverse craniectomy- and craniectomy + CCI-induced hypoadrenalism, 2) is detrimental to medium- and long-term spatial learning and memory in craniectomized uninjured rats, 3) limits cognitive recovery following a moderate-severe CCI injury, and 4) does not alter body weight.
Collapse
Affiliation(s)
- Rastafa I. Geddes
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Kentaro Hayashi
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Quinn Bongers
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Marlyse Wehber
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Icelle M. Anderson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Alex D. Jansen
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Chase Nier
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Emily Fares
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Gabrielle Farquhar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Amita Kapoor
- Assay Services Unit and Institute for Clinical and Translational Research Core Laboratory, National Primate Research Center, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Toni E. Ziegler
- Assay Services Unit and Institute for Clinical and Translational Research Core Laboratory, National Primate Research Center, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Sivan VadakkadathMeethal
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Ian M. Bird
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Craig S. Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
- Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, Wisconsin, United States of America
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
11
|
Lecoq AL, Chanson P. [Hypopituitarism following traumatic brain injury: diagnostic and therapeutic issues]. ANNALES D'ENDOCRINOLOGIE 2016; 76:S10-8. [PMID: 26776284 DOI: 10.1016/s0003-4266(16)30003-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Traumatic Brain Injury (TBI) is a well-known public health problem worldwide and is a leading cause of death and disability, particularly in young adults. Besides neurological and psychiatric issues, pituitary dysfunction can also occur after TBI, in the acute or chronic phase. The exact prevalence of post-traumatic hypopituitarism is difficult to assess due to the wide heterogeneity of published studies and bias in interpretation of hormonal test results in this specific population. Predictive factors for hypopituitarism have been proposed and are helpful for the screening. The pathophysiology of pituitary dysfunction after TBI is not well understood but the vascular hypothesis is privileged. Activation of pituitary stem/progenitor cells is probably involved in the recovery of pituitary functions. Those cells also play a role in the induction of pituitary tumors, highlighting their crucial place in pituitary conditions. This review updates the current data related to anterior pituitary dysfunction after TBI and discusses the bias and difficulties encountered in its diagnosis.
Collapse
Affiliation(s)
- A-L Lecoq
- INSERM Unité 1185, Faculté de Médecine Paris-Sud, 63 rue Gabriel Péri, 94276 Le Kremlin Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, 94275 Le Kremlin Bicêtre, France; Université Paris-Sud, UMR S1185, 94276 Le Kremlin-Bicêtre, France.
| | - P Chanson
- INSERM Unité 1185, Faculté de Médecine Paris-Sud, 63 rue Gabriel Péri, 94276 Le Kremlin Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, 94275 Le Kremlin Bicêtre, France; Université Paris-Sud, UMR S1185, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
12
|
Tritos NA, Yuen KCJ, Kelly DF. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY DISEASE STATE CLINICAL REVIEW: A NEUROENDOCRINE APPROACH TO PATIENTS WITH TRAUMATIC BRAIN INJURY. Endocr Pract 2016; 21:823-31. [PMID: 26172127 DOI: 10.4158/ep14567.dscr] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is now recognized as a major public health concern in the United States and is associated with substantial morbidity and mortality in both children and adults. Several lines of evidence indicate that TBI-induced hypopituitarism is not infrequent in TBI survivors and may contribute to the burden of illness in this population. The goal of this article is to review the published data and propose an approach for the neuroendocrine evaluation and management of these patients. METHODS To identify pertinent articles, electronic literature searches were conducted using the following keywords: "traumatic brain injury," "pituitary," "hypopituitarism," "growth hormone deficiency," "hypogonadism," "hypoadrenalism," and "hypothyroidism." Relevant articles were identified and considered for inclusion in the present article. RESULTS TBI-induced hypopituitarism appears to be more common in patients with severe TBI. However, patients with mild TBI or those with repeated, sports-, or blast-related TBI are also at risk for hypopituitarism. Deficiencies of growth hormone and gonadotropins appear to be most common and have been associated with increased morbidity in this population. A systematic approach is advised in order to establish the presence of pituitary hormone deficiencies and implement appropriate replacement therapies. CONCLUSION The presence of traumatic hypopituitarism should be considered during the acute phase as well as during the rehabilitation phase of patients with TBI. All patients with moderate to severe TBI require evaluation of pituitary function. In addition, symptomatic patients with mild TBI and impaired quality of life are at risk for hypopituitarism and should be offered neuroendocrine testing.
Collapse
|
13
|
Kreber LA, Griesbach GS, Ashley MJ. Detection of Growth Hormone Deficiency in Adults with Chronic Traumatic Brain Injury. J Neurotrauma 2015; 33:1607-13. [PMID: 26414093 PMCID: PMC5011623 DOI: 10.1089/neu.2015.4127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study examined the prevalence of growth hormone deficiency (GHD) in patients with traumatic brain injury (TBI) during the post-acute phase of recovery and whether GHD was associated with increased disability, decreased independence, and depression. A secondary objective was to determine the accuracy of insulin-like growth factor-1 (IGF-1) levels in predicting GHD in patients with TBI. Anterior pituitary function was assessed in 235 adult patients with TBI through evaluation of fasting morning hormone levels. GH levels were assessed through provocative testing, specifically the glucagon stimulation test. GHD was diagnosed in a significant number of patients, with 45% falling into the severe GHD (≤3 μg/L) category. IGF-1 levels were not predictive of GHD. Patients with GHD were more disabled and less independent compared with those patients who were not GHD. Those patients with more severe GHD also showed decreased levels of cortisol and testosterone. Symptoms of depression were also more prevalent in this group. In addition, patients with severe GHD had delayed admission to post-acute rehabilitation. This study confirms the high prevalence of GHD in patients with TBI and the necessity to monitor clinical symptoms and perform provocative testing to definitively diagnose GHD.
Collapse
Affiliation(s)
- Lisa A Kreber
- 1 Centre for Neuro Skills, David Geffen School of Medicine at UCLA , Bakersfield, California.,3 Centre for Neuro Skills - Clinical Education and Research Foundation, David Geffen School of Medicine at UCLA , Bakersfield, California
| | - Grace S Griesbach
- 1 Centre for Neuro Skills, David Geffen School of Medicine at UCLA , Bakersfield, California.,2 Department of Neurosurgery, David Geffen School of Medicine at UCLA , Bakersfield, California.,3 Centre for Neuro Skills - Clinical Education and Research Foundation, David Geffen School of Medicine at UCLA , Bakersfield, California
| | - Mark J Ashley
- 1 Centre for Neuro Skills, David Geffen School of Medicine at UCLA , Bakersfield, California.,3 Centre for Neuro Skills - Clinical Education and Research Foundation, David Geffen School of Medicine at UCLA , Bakersfield, California
| |
Collapse
|
14
|
Marina D, Klose M, Nordenbo A, Liebach A, Feldt-Rasmussen U. Early endocrine alterations reflect prolonged stress and relate to 1-year functional outcome in patients with severe brain injury. Eur J Endocrinol 2015; 172:813-22. [PMID: 25825347 DOI: 10.1530/eje-14-1152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 03/30/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Severe brain injury may increase the risk of developing acute and chronic hypopituitarism. Pituitary hormone alterations developed in the early recovery phase after brain injury may have implications for long-term functional recovery. The objective of the present study was to assess the pattern and prevalence of pituitary hormone alterations 3 months after a severe brain injury with relation to functional outcome at a 1-year follow-up. DESIGN Prospective study at a tertiary university referral centre. METHODS A total of 163 patients admitted to neurorehabilitation after severe traumatic brain injury (TBI, n=111) or non-TBI (n=52) were included. The main outcome measures were endocrine alterations 3.3 months (median) after the brain injury and their relationship to the functioning and ability of the patients at a 1-year follow-up, as measured by the Functional Independence Measure and the Glasgow Outcome Scale-Extended. RESULTS Three months after the injury, elevated stress hormones (i.e. 30 min stimulated cortisol, prolactin and/or IGF1) and/or suppressed gonadal or thyroid hormones were recorded in 68 and 32% of the patients respectively. At 1 year after the injury, lower functioning level (Functional Independence Measure) and lower capability of performing normal life activities (Glasgow Outcome Scale-Extended) were related to both the elevated stress hormones (P≤0.01) and the reduced gonadal and/or thyroid hormones (P≤0.01) measured at 3 months. CONCLUSION The present study suggests that brain injury-related endocrine alterations that mimic secondary hypogonadism and hypothyroidism and that occur with elevated stress hormones most probably reflect a prolonged stress response 2-5 months after severe brain injury, rather than pituitary insufficiency per se. These endocrine alterations thus seem to reflect a more severe disease state and relate to 1-year functional outcome.
Collapse
Affiliation(s)
- Djordje Marina
- Department of Medical Endocrinology PE2131Rigshospital, Copenhagen University Hospital, Copenhagen, DenmarkTraumatic Brain Injury UnitDepartment of Neurorehabilitation, Glostrup Hospital, Copenhagen University Hospital, Glostrup, Denmark
| | - Marianne Klose
- Department of Medical Endocrinology PE2131Rigshospital, Copenhagen University Hospital, Copenhagen, DenmarkTraumatic Brain Injury UnitDepartment of Neurorehabilitation, Glostrup Hospital, Copenhagen University Hospital, Glostrup, Denmark
| | - Annette Nordenbo
- Department of Medical Endocrinology PE2131Rigshospital, Copenhagen University Hospital, Copenhagen, DenmarkTraumatic Brain Injury UnitDepartment of Neurorehabilitation, Glostrup Hospital, Copenhagen University Hospital, Glostrup, Denmark
| | - Annette Liebach
- Department of Medical Endocrinology PE2131Rigshospital, Copenhagen University Hospital, Copenhagen, DenmarkTraumatic Brain Injury UnitDepartment of Neurorehabilitation, Glostrup Hospital, Copenhagen University Hospital, Glostrup, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology PE2131Rigshospital, Copenhagen University Hospital, Copenhagen, DenmarkTraumatic Brain Injury UnitDepartment of Neurorehabilitation, Glostrup Hospital, Copenhagen University Hospital, Glostrup, Denmark
| |
Collapse
|
15
|
Ripley D, Wierman M, Gerber D, Weintraub A, Newman J. Comment on The Decision to Provide Testosterone Supplementation to Patients With Traumatic Brain Injury. PM R 2014; 6:761. [DOI: 10.1016/j.pmrj.2014.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/07/2014] [Indexed: 10/24/2022]
Affiliation(s)
- David Ripley
- Rehabilitation Institute of Chicago, Chicago, IL
| | - Margaret Wierman
- Medicine and Neuroscience, University of Colorado School of Medicine, Aurora, CO
| | - Don Gerber
- Endocrinology, Denver VA Medical Center, Denver, CO
| | | | | |
Collapse
|
16
|
Clinical outcomes, predictors, and prevalence of anterior pituitary disorders following traumatic brain injury: a systematic review. Crit Care Med 2014; 42:712-21. [PMID: 24247474 DOI: 10.1097/ccm.0000000000000046] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To assess the clinical outcomes, predictors, and prevalence of anterior pituitary disorders following traumatic brain injury. DATA SOURCES We searched Medline, Embase, Cochrane Registry, BIOSIS, and Trip Database up to February 2012 and consulted bibliographies of narrative reviews and selected articles. STUDY SELECTION We included cohort, case-control, cross-sectional studies and randomized trials enrolling at least five adults with blunt traumatic brain injury in whom at least one anterior pituitary axis was assessed. We excluded case series and studies in which other neurological conditions were indistinguishable from traumatic brain injury. DATA EXTRACTION Two independent reviewers selected citations, extracted data, and assessed the risk of bias using a standardized form. DATA SYNTHESIS We performed meta-analyses using random effect models and assessed heterogeneity using the I index. RESULTS We included 66 studies (5,386 patients) evaluating prevalence, 14 evaluating clinical outcomes, and 27 evaluating predictors. Thirty studies were at low risk of bias. Anterior pituitary disorders were associated with a trend toward increased ICU mortality (risk ratio, 1.79; 95% CI, 0.99-3.21; four studies) and no difference in Glasgow Outcome Scale score (mean difference, -0.45; 95% CI, -1.10 to 0.20; three studies). Age (mean difference, 3.19; 95% CI, 0.31-6.08; 19 studies), traumatic brain injury severity (risk ratio, 2.15; 95% CI, 1.20-3.86 for patients with severe vs nonsevere traumatic brain injury; seven studies), and skull fractures (risk ratio, 1.73; 95% CI, 1.03-2.91; six studies) predicted anterior pituitary disorders. Over the long term, 31.6% (95% CI, 23.6-40.1%; 27 studies) of patients had at least one anterior pituitary disorder. We observed significant heterogeneity that was not solely explained by the risk of bias or traumatic brain injury severity. CONCLUSIONS Approximately one third of traumatic brain injury patients have persistent anterior pituitary disorder. Older age, traumatic brain injury severity, and skull fractures predict anterior pituitary disorders, which in turn may be associated with higher ICU mortality. Further high-quality studies are warranted to better define the burden of anterior pituitary disorders and to identify high-risk patients.
Collapse
|
17
|
Hypothalamic-pituitary dysfunction following traumatic brain injury affects functional improvement during acute inpatient rehabilitation. J Head Trauma Rehabil 2014; 28:390-6. [PMID: 22613945 DOI: 10.1097/htr.0b013e318250eac6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To evaluate the occurrence of hypothalamic-pituitary dysfunction following a traumatic brain injury (TBI) and to determine its effect on functional improvement in acute inpatient rehabilitation. METHODS A retrospective chart review identified male patients with a primary diagnosis of TBI with or without a skull fracture, an onset date within 6 months prior to admission, and were 16 years of age or older. The percentage of individuals in this population with abnormal hormone levels was determined on the basis of the established normal reference range for each hormone assay. The functional independence measure, which assesses functional outcomes in acute inpatient rehabilitation, was used to examine the relationship between hormone levels and functional improvement. RESULTS Hypothalamic-pituitary dysfunction was identified in nearly 70% of men following TBI. Hypogonadism, or low testosterone levels, was observed in 66% of the patients, followed by low levels of free T4 in 46% and low levels of insulin growth factor-1 in 26% of patients. Hypopituitarism associated with impaired functional recovery. Specifically, the functional independence measure change per day was significantly lower in patients with low levels of testosterone and insulin growth factor-1. CONCLUSIONS These findings suggest the importance of testosterone and insulin growth factor-1 activity in the early stages of physical and cognitive rehabilitation.
Collapse
|
18
|
Kopczak A, Kilimann I, von Rosen F, Krewer C, Schneider HJ, Stalla GK, Schneider M. Screening for hypopituitarism in 509 patients with traumatic brain injury or subarachnoid hemorrhage. J Neurotrauma 2013; 31:99-107. [PMID: 23980725 DOI: 10.1089/neu.2013.3002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We performed a screening on patients with traumatic brain injury (TBI) or subarachnoid hemorrhage (SAH) to determine the prevalence of post-traumatic hypopituitarism in neurorehabilitation in a cross-sectional, observational single-center study. In addition, the therapeutic consequences of our screening were analyzed retrospectively. From February 2006 to August 2009, patients between 18 and 65 years (n=509) with the diagnosis of TBI (n=340) or SAH (n=169) were screened within two weeks of admittance to neurorehabilitation as clinical routine. Blood was drawn to determine fasting cortisol, free thyroxine (fT4), prolactin, testosterone or estradiol, and insulin-like growth factor I (IGF-I). Patients with abnormalities in the screening or clinical signs of hypopituitarism received further stimulation tests: growth hormone releasing hormone -L-arginine-test and adrenocorticotrophic hormone (ACTH)-test (n=36); ACTH-test alone (n=26); or insulin tolerance test (n=56). In our screening of 509 patients, 28.5% showed lowered values in at least one hormone of the hypothalamus-pituitary axis and 4.5% in two or more axes. The most common disturbance was a decrease of testosterone in 40.7% of all men (in the following 13/131 men were given substitution therapy). Low fT4 was detected in 5.9% (n=3 were given substitution therapy). Low IGF-I was detected in 5.8%, low cortisol in 1.4%, and low prolactin in 0.2%; none were given substitution therapy. Further stimulation tests revealed growth hormone deficiency in 20.7% (n=19/92) and hypocortisolism in 23.7% (n=28/118). Laboratory values possibly indicating hypopituitarism (33%) were common but did not always implicate post-traumatic hypopituitarism. Laboratory values possibly indicating hypopituitarism were common in our screening but most patients were clinically not diagnosed as pituitary insufficient and did not receive hormone replacement therapy. A routine screening of all patients in neurorehabilitation without considering the time since injury, the severity of illness and therapeutic consequences seems not useful.
Collapse
Affiliation(s)
- Anna Kopczak
- 1 Clinical Neuroendocrinology, Max Planck Institute of Psychiatry , Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Sundaram NK, Geer EB, Greenwald BD. The impact of traumatic brain injury on pituitary function. Endocrinol Metab Clin North Am 2013; 42:565-83. [PMID: 24011887 DOI: 10.1016/j.ecl.2013.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is paramount that clinicians who care for patients with traumatic brain injury (TBI) at any point in time, including neurosurgeons, rehabilitation physicians, internists, neurologists, and endocrinologists, are aware of the prevalence of posttraumatic hypopituitarism and its impacts on acute and long-term recovery. This article reviews the natural history, pathophysiology, and presenting features of hypopituitarism occurring after TBI. Proposed methodologies for screening, diagnosis, and initiation of treatment are discussed, as well as the effect of hormone replacement therapy on clinical outcomes.
Collapse
Affiliation(s)
- Nina K Sundaram
- Division of Endocrinology, Diabetes, and Bone Disease, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1055, New York, NY 10029, USA.
| | | | | |
Collapse
|
20
|
Wagner AK, Brett CA, McCullough EH, Niyonkuru C, Loucks TL, Dixon CE, Ricker J, Arenth P, Berga SL. Persistent hypogonadism influences estradiol synthesis, cognition and outcome in males after severe TBI. Brain Inj 2012; 26:1226-42. [DOI: 10.3109/02699052.2012.667594] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Hannon MJ, Sherlock M, Thompson CJ. Pituitary dysfunction following traumatic brain injury or subarachnoid haemorrhage - in "Endocrine Management in the Intensive Care Unit". Best Pract Res Clin Endocrinol Metab 2011; 25:783-98. [PMID: 21925078 DOI: 10.1016/j.beem.2011.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Traumatic brain injury and subarachnoid haemorrhage are important causes of morbidity and mortality in the developed world. There is a large body of evidence that demonstrates that both conditions may adversely affect pituitary function in both the acute and chronic phases of recovery. Diagnosis of hypopituitarism and accurate treatment of pituitary disorders offers the opportunity to improve mortality and outcome in both traumatic brain injury and subarachnoid haemorrhage. In this article, we will review the history and pathophysiology of pituitary function in the acute phase following traumatic brain injury and subarachnoid haemorrhage, and we will discuss in detail three key aspects of pituitary dysfunction which occur in the early course of TBI; acute cortisol deficiency, diabetes insipidus and SIAD.
Collapse
Affiliation(s)
- M J Hannon
- Academic Department of Endocrinology, Beaumont Hospital/RCSI Medical School, Beaumont Road, Dublin 9, Ireland
| | | | | |
Collapse
|
22
|
Ripley DL, Masel BE, Watanabe T. Endocrinopathy After Traumatic Brain Injury. PM R 2011; 3:268-73. [DOI: 10.1016/j.pmrj.2011.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 01/27/2011] [Indexed: 11/27/2022]
|