1
|
Pavilionis P, Adhanom IB, Moran R, Taylor MR, Murray NG. Virtual Reality Application for Vestibular/Ocular Motor Screening: Current Clinical Protocol Versus a Novel Prototype. Sports Health 2024; 16:407-413. [PMID: 36988294 PMCID: PMC11025519 DOI: 10.1177/19417381231163158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Virtual reality (VR) has been explored to improve baseline and postinjury assessments in sport-related concussion (SRC). Some experience symptoms related to VR, unrelated to concussion. This may deter use of vestibular/ocular motor screening (VOMS) using VR. Baseline VR VOMS symptomatology differentiates baseline from overall symptomatology. HYPOTHESIS There will be no difference between current clinical manual VOMS (MAN), a clinical prototype (PRO), and VR for symptom provocation change score (SPCS) and near point of convergence (NPC) average score in a healthy population and sex differences among the 3 modes of administration. STUDY DESIGN Cohort study. LEVEL OF EVIDENCE Level 3. METHODS A total of 688 National Collegiate Athletic Association Division I student-athletes completed VOMS using 3 methods (MAN, N = 111; female athletes, N = 47; male athletes, N = 64; average age, 21 years; PRO, N = 365; female athletes, N = 154; male athletes, N = 211; average age, 21 years; VR, N = 212; female athletes, N = 78; male athletes, N = 134; average age = 20 years) over a 3-year period (2019-2021) during annual baseline testing. Exclusion criteria were as follows: self-reported motion sickness in the past 6 months, existing or previous neurological insult, attention deficit hyperactivity disorder, learning disabilities, or noncorrected vision impairment. Administration of MAN followed the current clinical protocols, PRO used a novel prototype, and VR used an HTC Vive Pro Eye head mounted display. Symptom provocation was compared using Mann-Whitney U tests across each VOMS subtest with total SPCS and NPC average by each method. RESULTS MAN had significantly (P < 0.01) more baseline SPCS (MAN = 0.466 ± 1.165, PRO = 0.163 ± 0.644, VR = 0.161 ± 0.933) and significantly (P < 0.01) and more SPCS (MAN = 0.396 ± 1.081, PRO = 0.128 ± 0.427, VR = 0.48 ± 0.845) when compared with PRO and VR. NPC average measurements for VR (average, 2.99 ± 0.684 cm) were significantly greater than MAN (average, 2.91 ± 3.35 cm; P < 0.01; Cohen's d = 0.03) and PRO (average, 2.21 ± 1.81 cm; P < 0.01; Cohen's d = 0.57). For sex differences, female athletes reported greater SPCS with PRO (female athletes, 0.29 ± 0.87; male athletes, 0.06 ± 0.29; P < 0.01) but not in VR or MAN. CONCLUSION Using a VR system to administer the VOMS may not elicit additional symptoms, resulting in fewer false positives and is somewhat stable between sexes. CLINICAL RELEVANCE VOMS may allow for standardization among administrators and reduce possible false positives.
Collapse
Affiliation(s)
- Philip Pavilionis
- Neuromechanics Laboratory, School of Public Health, University of Nevada, Reno, Nevada
| | - Isayas Berhe Adhanom
- Computer Science and Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Ryan Moran
- Athletic Training Research Laboratory, The University of Alabama, Tuscaloosa, Alabama
| | - Madison R. Taylor
- Neuromechanics Laboratory, School of Public Health, University of Nevada, Reno, Nevada
| | - Nicholas G. Murray
- Neuromechanics Laboratory, School of Public Health, University of Nevada, Reno, Nevada
| |
Collapse
|
2
|
de Souza DN, Jarmol M, Bell CA, Marini C, Balcer LJ, Galetta SL, Grossman SN. Precision Concussion Management: Approaches to Quantifying Head Injury Severity and Recovery. Brain Sci 2023; 13:1352. [PMID: 37759953 PMCID: PMC10526525 DOI: 10.3390/brainsci13091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Mitigating the substantial public health impact of concussion is a particularly difficult challenge. This is partly because concussion is a highly prevalent condition, and diagnosis is predominantly symptom-based. Much of contemporary concussion management relies on symptom interpretation and accurate reporting by patients. These types of reports may be influenced by a variety of factors for each individual, such as preexisting mental health conditions, headache disorders, and sleep conditions, among other factors. This can all be contributory to non-specific and potentially misleading clinical manifestations in the aftermath of a concussion. This review aimed to conduct an examination of the existing literature on emerging approaches for objectively evaluating potential concussion, as well as to highlight current gaps in understanding where further research is necessary. Objective assessments of visual and ocular motor concussion symptoms, specialized imaging techniques, and tissue-based concentrations of specific biomarkers have all shown promise for specifically characterizing diffuse brain injuries, and will be important to the future of concussion diagnosis and management. The consolidation of these approaches into a comprehensive examination progression will be the next horizon for increased precision in concussion diagnosis and treatment.
Collapse
Affiliation(s)
- Daniel N. de Souza
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Mitchell Jarmol
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Carter A. Bell
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Christina Marini
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Steven L. Galetta
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Scott N. Grossman
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| |
Collapse
|
3
|
Bell CA, Grossman SN, Balcer LJ, Galetta SL. Vision as a piece of the head trauma puzzle. Eye (Lond) 2023; 37:2385-2390. [PMID: 36801966 PMCID: PMC10397310 DOI: 10.1038/s41433-023-02437-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Approximately half of the brain's circuits are involved in vision and control of eye movements. Therefore, visual dysfunction is a common symptom of concussion, the mildest form of traumatic brain injury (TBI). Photosensitivity, vergence dysfunction, saccadic abnormalities, and distortions in visual perception have been reported as vision-related symptoms following concussion. Impaired visual function has also been reported in populations with a lifetime history of TBI. Consequently, vision-based tools have been developed to detect and diagnose concussion in the acute setting, and characterize visual and cognitive function in those with a lifetime history of TBI. Rapid automatized naming (RAN) tasks have provided widely accessible and quantitative measures of visual-cognitive function. Laboratory-based eye tracking approaches demonstrate promise in measuring visual function and validating results from RAN tasks in patients with concussion. Optical coherence tomography (OCT) has detected neurodegeneration in patients with Alzheimer's disease and multiple sclerosis and may provide critical insight into chronic conditions related to TBI, such as traumatic encephalopathy syndrome. Here, we review the literature and discuss the future directions of vision-based assessments of concussion and conditions related to TBI.
Collapse
Affiliation(s)
- Carter A Bell
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Scott N Grossman
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Laura J Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Steven L Galetta
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Echemendia RJ, Burma JS, Bruce JM, Davis GA, Giza CC, Guskiewicz KM, Naidu D, Black AM, Broglio S, Kemp S, Patricios JS, Putukian M, Zemek R, Arango-Lasprilla JC, Bailey CM, Brett BL, Didehbani N, Gioia G, Herring SA, Howell D, Master CL, Valovich McLeod TC, Meehan WP, Premji Z, Salmon D, van Ierssel J, Bhathela N, Makdissi M, Walton SR, Kissick J, Pardini J, Schneider KJ. Acute evaluation of sport-related concussion and implications for the Sport Concussion Assessment Tool (SCAT6) for adults, adolescents and children: a systematic review. Br J Sports Med 2023; 57:722-735. [PMID: 37316213 DOI: 10.1136/bjsports-2022-106661] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To systematically review the scientific literature regarding the acute assessment of sport-related concussion (SRC) and provide recommendations for improving the Sport Concussion Assessment Tool (SCAT6). DATA SOURCES Systematic searches of seven databases from 2001 to 2022 using key words and controlled vocabulary relevant to concussion, sports, SCAT, and acute evaluation. ELIGIBILITY CRITERIA (1) Original research articles, cohort studies, case-control studies, and case series with a sample of >10; (2) ≥80% SRC; and (3) studies using a screening tool/technology to assess SRC acutely (<7 days), and/or studies containing psychometric/normative data for common tools used to assess SRC. DATA EXTRACTION Separate reviews were conducted involving six subdomains: Cognition, Balance/Postural Stability, Oculomotor/Cervical/Vestibular, Emerging Technologies, and Neurological Examination/Autonomic Dysfunction. Paediatric/Child studies were included in each subdomain. Risk of Bias and study quality were rated by coauthors using a modified SIGN (Scottish Intercollegiate Guidelines Network) tool. RESULTS Out of 12 192 articles screened, 612 were included (189 normative data and 423 SRC assessment studies). Of these, 183 focused on cognition, 126 balance/postural stability, 76 oculomotor/cervical/vestibular, 142 emerging technologies, 13 neurological examination/autonomic dysfunction, and 23 paediatric/child SCAT. The SCAT discriminates between concussed and non-concussed athletes within 72 hours of injury with diminishing utility up to 7 days post injury. Ceiling effects were apparent on the 5-word list learning and concentration subtests. More challenging tests, including the 10-word list, were recommended. Test-retest data revealed limitations in temporal stability. Studies primarily originated in North America with scant data on children. CONCLUSION Support exists for using the SCAT within the acute phase of injury. Maximal utility occurs within the first 72 hours and then diminishes up to 7 days after injury. The SCAT has limited utility as a return to play tool beyond 7 days. Empirical data are limited in pre-adolescents, women, sport type, geographical and culturally diverse populations and para athletes. PROSPERO REGISTRATION NUMBER CRD42020154787.
Collapse
Affiliation(s)
- Ruben J Echemendia
- Concussion Care Clinic, University Orthopedics, State College, Pennsylvania, USA
- University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Joel S Burma
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jared M Bruce
- Biomedical and Health Informatics, University of Missouri - Kansas City, Kansas City, Missouri, USA
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Cabrini Health, Malvern, Victoria, Australia
| | - Christopher C Giza
- Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, California, USA
- Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, California, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dhiren Naidu
- Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Steven Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Simon Kemp
- Sports Medicine, Rugby Football Union, London, UK
| | - Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg-Braamfontein, South Africa
| | | | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Christopher M Bailey
- Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Benjamin L Brett
- Neurosurgery/ Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Gerry Gioia
- Depts of Pediatrics and Psychiatry & Behavioral Sciences, Children's National Health System, Washington, District of Columbia, USA
| | - Stanley A Herring
- Department of Rehabilitation Medicine, Orthopaedics and Sports Medicine, and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - David Howell
- Orthopedics, Sports Medicine Center, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Tamara C Valovich McLeod
- Department of Athletic Training and School of Osteopathic Medicine in Arizona, A.T. Still University, Mesa, Arizona, USA
| | - William P Meehan
- Sports Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
- Emergency Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | | | | | - Neil Bhathela
- UCLA Health Steve Tisch BrainSPORT Program, Los Angeles, California, USA
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- La Trobe Sport and Exercise Medicine Research Centre, Melbourne, Victoria, Australia
| | - Samuel R Walton
- Department of Physical Medicine and Rehabilitation, School of Medicine, Richmond, Virginia, USA
| | - James Kissick
- Dept of Family Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jamie Pardini
- Departments of Internal Medicine and Neurology, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Bell CA, Rice L, Balcer MJ, Pearson R, Penning B, Alexander A, Roskelly J, Nogle S, Tomczyk CP, Tracey AJ, Loftin MC, Pollard-McGrandy AM, Zynda AJ, Covassin T, Park G, Rizzo JR, Hudson T, Rucker JC, Galetta SL, Balcer L, Kaufman DI, Grossman SN. MICK (Mobile Integrated Cognitive Kit) app: Feasibility of an accessible tablet-based rapid picture and number naming task for concussion assessment in a division 1 college football cohort. J Neurol Sci 2022; 442:120445. [PMID: 36208585 DOI: 10.1016/j.jns.2022.120445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022]
Abstract
Although visual symptoms are common following concussion, quantitative measures of visual function are missing from concussion evaluation protocols on the athletic sideline. For the past half century, rapid automatized naming (RAN) tasks have demonstrated promise as quantitative neuro-visual assessment tools in the setting of head trauma and other disorders but have been previously limited in accessibility and scalability. The Mobile Interactive Cognitive Kit (MICK) App is a digital RAN test that can be downloaded on most mobile devices and can therefore provide a quantitative measure of visual function anywhere, including the athletic sideline. This investigation examined the feasibility of MICK App administration in a cohort of Division 1 college football players. Participants (n = 82) from a National Collegiate Athletic Association (NCAA) Division 1 football team underwent baseline testing on the MICK app. Total completion times of RAN tests on the MICK app were recorded; magnitudes of best time scores and between-trial learning effects were determined by paired t-test. Consistent with most timed performance measures, there were significant learning effects between the two baseline trials for both RAN tasks on the MICK app: Mobile Universal Lexicon Evaluation System (MULES) (p < 0.001, paired t-test, mean improvement 13.3 s) and the Staggered Uneven Number (SUN) (p < 0.001, mean improvement 3.3 s). This study demonstrated that the MICK App can be feasibly administered in the setting of pre-season baseline testing in a Division I environment. These data provide a foundation for post-injury sideline testing that will include comparison to baseline in the setting of concussion.
Collapse
Affiliation(s)
- Carter A Bell
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Lionel Rice
- Michigan State University, East Lansing, MI, USA.
| | | | | | | | | | | | - Sally Nogle
- Michigan State University, East Lansing, MI, USA.
| | | | | | | | | | | | | | - George Park
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| | - John-Ross Rizzo
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA; Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Todd Hudson
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA; Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Janet C Rucker
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Steven L Galetta
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Laura Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA.
| | | | - Scott N Grossman
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Hecimovich M, King D, Murphy M, Koyama K. An investigation into the measurement properties of the King-Devick Eye Tracking system. JOURNAL OF CONCUSSION 2022. [DOI: 10.1177/20597002221082865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Eye tracking has been gaining increasing attention as a possible assessment and monitoring tool for concussion. The King-Devick test (K-DT) was expanded to include an infrared video-oculography-based eye tracker (K-D ET). Therefore, the aim was to provide evidence on the reliability of the K-D ET system under an exercise condition. Methods Participants (N = 61; 26 male, 35 female; age range 19-25) were allocated to an exercise or sedentary group. Both groups completed a baseline K-D ET measurement and then either two 10-min exercise or sedentary interventions with repeated K-D ET measurements between interventions. Results The test-retest reliability of the K-D ET ranged from good to excellent for the different variables measured. The mean ± SD of the differences for the total number of saccades was 1.04 ± 4.01 and there was an observable difference (p = 0.005) in the trial number. There were no observable differences for the intervention (p = 0.768), gender (p = 0.121) and trial (p = 0.777) for average saccade’s velocity. The mean ± SD of the difference of the total fixations before and after intervention across both trials was 1.04 ± 3.63 and there was an observable difference in the trial number (p = 0.025). The mean ± SD of the differences for the Inter-Saccadic Interval and the fixation polyarea before and after intervention across both trials were 1.86 ± 22.99 msec and 0.51 ± 59.11 mm2 and no observable differences for the intervention, gender and trial. Conclusion The results provide evidence on the reliability of the K-D ET, and the eye-tracking components and demonstrate the relationship between completion time and other variables of the K-D ET system. This is vital as the use of the K-DT may be increasing and the combination of the K-DT and eye tracking as one single package highlights the need to specifically measure the reliability of this combined unit.
Collapse
Affiliation(s)
- M. Hecimovich
- Division of Athletic Training, University of Northern Iowa, Cedar Falls, Iowa, USA
| | - D. King
- Sports Performance Research Institute New Zealand (SPRINZ) at AUT Millennium, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
- Traumatic Brain injury Network (TBIN), Auckland University of Technology, Auckland, New Zealand
- Department of Science and Technology, University of New England, Sydney, Australia
| | - M. Murphy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- SportsMed Subiaco, St John of God Health Care, Subiaco, Western Australia, Australia
| | - K. Koyama
- Department of Rehabilitation Medicine, Gunma University Graduate School of Medicine
| |
Collapse
|
7
|
Stockbridge MD, Keser Z, Newman RS. Concussion in Women's Flat-Track Roller Derby. Front Neurol 2022; 13:809939. [PMID: 35237230 PMCID: PMC8882964 DOI: 10.3389/fneur.2022.809939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Abstract
Concussions are common among flat-track roller derby players, a unique and under-studied sport, but little has been done to assess how common they are or what players can do to manage injury risk. The purpose of this study is to provide an epidemiological investigation of concussion incidence and experience in a large international sampling of roller derby players. Six hundred sixty-five roller derby players from 25 countries responded to a comprehensive online survey about injury and sport participation. Participants also responded to a battery of psychometric assessment tools targeting risk-factors for poor injury recovery (negative bias, social support, mental toughness) and players' thoughts and feelings in response to injury. Per 1,000 athletes, 790.98 concussions were reported. Current players reported an average of 2.2 concussions, while former players reported 3.1 concussions. However, groups were matched when these figures were corrected for differences in years of play (approximately one concussion every 2 years). Other frequent injuries included fractures in extremities and upper limbs, torn knee ligaments, and sprained ankles. We found no evidence that players' position, full-contact scrimmages, or flooring impacted number of concussions. However, neurological history and uncorrected vision were more influential predictors of an individual's number of concussions during roller derby than years of participation or age, though all four contributed significantly. These findings should assist athletes in making informed decisions about participation in roller derby, though more work is needed to understand the nature of risk.
Collapse
Affiliation(s)
- Melissa D. Stockbridge
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Melissa D. Stockbridge
| | - Zafer Keser
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Rochelle S. Newman
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
8
|
The MICK (Mobile integrated cognitive kit) app: Digital rapid automatized naming for visual assessment across the spectrum of neurological disorders. J Neurol Sci 2022; 434:120150. [PMID: 35038658 DOI: 10.1016/j.jns.2022.120150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Rapid automatized naming (RAN) tasks have been utilized for decades to evaluate neurological conditions. Time scores for the Mobile Universal Lexicon Evaluation System (MULES, rapid picture naming) and Staggered Uneven Number (SUN, rapid number naming) are prolonged (worse) with concussion, mild cognitive impairment, multiple sclerosis and Parkinson's disease. The purpose of this investigation was to compare paper/pencil versions of MULES and SUN with a new digitized format, the MICK app. METHODS Participants (healthy office-based volunteers, professional women's hockey players), completed two trials of the MULES and SUN tests on both platforms (tablet, paper/pencil). The order of presentation of the testing platforms was randomized. Between-platform variability was calculated using the two-way random-effects intraclass correlation coefficient (ICC). RESULTS Among 59 participants (median age 32, range 22-83), no significant differences were observed for comparisons of mean best scores for the paper/pencil versus MICK app platforms, counterbalanced for order of administration (P = 0.45 for MULES, P = 0.50 for SUN, linear regression). ICCs for agreement between the MICK and paper/pencil tests were 0.92 (95% CI 0.86, 0.95) for MULES and 0.94 (95% CI 0.89, 0.96) for SUN, representing excellent levels of agreement. Inter-platform differences did not vary systematically across the range of average best time score for either test. CONCLUSION The MICK app for digital administration of MULES and SUN demonstrates excellent agreement of time scores with paper/pencil testing. The computerized app allows for greater accessibility and scalability in neurological diseases, inclusive of remote monitoring. Sideline testing for sports-related concussion may also benefit from this technology.
Collapse
|