1
|
Dahlén SC, Bjørneboe J, Sandmo SK, Bache-Mathisen L, Filipcik P, Howe EI, Høgestøl EA, Selbæk G, Straume-Næsheim T, Westlye LT, Bahr R, Andersen TE. Brain health in Norwegian female former top-level football players: a protocol for a longitudinal cohort study. BMJ Open 2025; 15:e092456. [PMID: 39800397 PMCID: PMC11751818 DOI: 10.1136/bmjopen-2024-092456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
INTRODUCTION Repetitive head impacts (RHI) in sports may represent a risk factor for long-term cognitive and neurological sequelae. Recent studies have identified an association between playing football at the top level and an elevated risk of cognitive impairment and neurodegenerative disease. However, these were conducted on men, and there is a knowledge gap regarding these risks in female athletes. This study aims to investigate the effect of head impacts on brain health in female former top-level football players. METHODS AND ANALYSIS This is a prospective cohort study, enroling female former football players and top-level athletes from sports without an inherent risk of RHI. All participants are born in 1980 or earlier. We plan to perform follow-up assessments at least three times over 20 years.The protocol includes neurocognitive assessments, self-reported neurocognitive outcomes, neurological examination, advanced brain MRI, and fluid biomarkers. ETHICS AND DISSEMINATION The study has been approved by the South-East Regional Ethics Committee for Medical Research in Norway (2023/178330) and the Norwegian Agency for Shared Services in Education and Research (SIKT). A Data Protection Impact Assessment was developed by the research group and approved by SIKT and the Norwegian School of Sport Sciences. We will disseminate the results through peer-reviewed publications, academic conference presentations and webinars. We will communicate with the public and key stakeholders in football worldwide to inform and promote the development and implementation of potential preventive measures based on our study findings.
Collapse
Affiliation(s)
- Sara Christina Dahlén
- Oslo Sports Trauma Research Centre, Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Oslo, Norway
| | - John Bjørneboe
- Oslo Sports Trauma Research Centre, Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Stian Kirkerud Sandmo
- Oslo Sports Trauma Research Centre, Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Oslo, Norway
| | - Lena Bache-Mathisen
- Oslo Sports Trauma Research Centre, Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Oslo, Norway
| | - Peter Filipcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Emilie Isager Howe
- Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Einar August Høgestøl
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Oslo University Hospital, Oslo, Norway
| | - Geir Selbæk
- Centre for Ageing and Health, Vestfold Hospital Trust, Tonsberg, Vestfold, Norway
- Institute of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| | - Truls Straume-Næsheim
- Oslo Sports Trauma Research Centre, Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Oslo, Norway
- Department of Orthopaedic surgery, Akershus University Hospital, Lorenskog, Norway
| | - Lars T Westlye
- Department of Psychology, Oslo University Hospital, Oslo, Norway
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Roald Bahr
- Department of Sports Medicine, Norwegian School of Sports Medicine, Oslo Sports Trauma Research Centre, Oslo, Norway
| | - Thor Einar Andersen
- Oslo Sports Trauma Research Centre, Department of Sport Sciences, Norwegian School of Sports Sciences, Oslo, Oslo, Norway
| |
Collapse
|
2
|
Van Der Hofstadt M, Cardinal A, Lepeltier M, Boulestreau J, Ouedraogo A, Kahli M, Champigneux P, Molina L, Molina F, Van TNN. Assessment of salivary microRNA by RT-qPCR: Facing challenges in data interpretation for clinical diagnosis. PLoS One 2024; 19:e0314733. [PMID: 39656703 PMCID: PMC11630609 DOI: 10.1371/journal.pone.0314733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Salivary microRNAs (miRNAs) have been recently revealed as the next generation of non-invasive biomarkers for the diagnostics of diverse diseases. However, their short and highly homologous sequences make their quantification by RT-qPCR technique highly heterogeneous and study dependent, thus limiting their implementation for clinical applications. In this study, we evaluated the use of a widely used commercial RT-qPCR kit for quantification of salivary miRNAs for clinical diagnostics. Saliva from ten healthy volunteers were sampled four times within a three month time course and submitted for small RNA extraction followed by RT-qPCR analysed. Six miRNAs with different sequence homologies were analysed. Sensitivity and specificity of the tested miRNA assays were corroborated using synthetic miRNAs to evaluate the reliability of all tested assays. Significant variabilities in expression profiles of six miRNAs from ten healthy participants were revealed, yet the poor specificity of the assays offered insufficient performance to associate these differences to biological context. Indeed, as the limit of quantification (LOQ) concentrations are from 2-4 logs higher than that of the limit of detection (LOD) ones, the majority of the analysis for salivary miRNAs felt outside the quantification region. Most importantly, a remarkable number of crosstalk reactions exhibiting considerable OFF target signal intensities was detected, indicating their poor specificity and limited reliability. However, the spike-in of synthetic target miRNA increased the capacity to discriminate endogenous salivary miRNA at the LOQ concentrations from those that were significantly lower. Our results demonstrate that comparative analyses for salivary miRNA expression profiles by this commercial RT-qPCR kit are most likely associated to technical limitations rather than to biological differences. While further technological breakthroughs are still required to overcome discrepancies, standardization of rigorous sample handling and experimental design according to technical parameters of each assay plays a crucial role in reducing data inconsistencies across studies.
Collapse
Affiliation(s)
| | - Anna Cardinal
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Morgane Lepeltier
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Jérémy Boulestreau
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Alimata Ouedraogo
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Malik Kahli
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Pierre Champigneux
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Laurence Molina
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Franck Molina
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Thi Nhu Ngoc Van
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
- SkillCell/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| |
Collapse
|
3
|
Hamel R, Waltzing BM, Massey T, Blenkinsop J, McConnell L, Osborne K, Sesay K, Stoneman F, Carter A, Maaroufi H, Jenkinson N. Sub-concussive head impacts from heading footballs do not acutely alter brain excitability as compared to a control group. PLoS One 2024; 19:e0306560. [PMID: 39088385 PMCID: PMC11293750 DOI: 10.1371/journal.pone.0306560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/18/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Repeated sub-concussive head impacts are a growing brain health concern, but their possible biomarkers remain elusive. One impediment is the lack of a randomised controlled human experimental model to study their effects on the human brain. OBJECTIVES This work had two objectives. The first one was to provide a randomised controlled human experimental model to study the acute effects of head impacts on brain functions. To achieve this, this work's second objective was to investigate if head impacts from heading footballs acutely alter brain excitability by increasing corticospinal inhibition as compared to a control group. METHODS In practised and unpractised young healthy adults, transcranial magnetic stimulation was used to assess corticospinal silent period (CSP) duration and corticospinal excitability (CSE) before and immediately after performing headings by returning 20 hand-thrown balls directed to the head (Headings; n = 30) or the dominant foot (Control; n = 30). Moreover, the Rivermead Post-Concussion Questionnaire (RPQ) was used to assess the symptoms of head impacts. Head acceleration was also assessed in subgroups of participants. RESULTS The intervention lengthened CSP duration in both the Headings (6.4 ± 7.5%) and Control groups (4.6 ± 2.6%), with no difference in lengthening between the two groups. Moreover, CSE was not altered by the intervention and did not differ between groups. However, performing headings increased headaches and dizziness symptoms and resulted in greater head acceleration upon each football throw (12.5 ± 1.9g) as compared to the control intervention (5.5 ± 1.3g). CONCLUSIONS The results suggest that head impacts from football headings do not acutely alter brain excitability as compared to a control intervention. However, the results also suggest that the present protocol can be used as an experimental model to investigate the acute effects of head impacts on the human brain.
Collapse
Affiliation(s)
- Raphael Hamel
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Tom Massey
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James Blenkinsop
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leah McConnell
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kieran Osborne
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karamo Sesay
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Finn Stoneman
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Adam Carter
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hajar Maaroufi
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ned Jenkinson
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Tator CH, Moore C, Buso C, Huszti E, Li Q, Prentice EB, Khodadadi M, Scott O, Tartaglia CM. Cause of Concussion With Persisting Symptoms Is Associated With Long-Term Recovery and Symptom Type, Duration, and Number in a Longitudinal Cohort of 600 Patients. J Neurotrauma 2024; 41:1384-1398. [PMID: 38468550 PMCID: PMC11707678 DOI: 10.1089/neu.2023.0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
It is important for patients and clinicians to know the potential for recovery from concussion as soon as possible after injury, especially in patients who do not recover completely in the first month and have concussion with persisting concussion symptoms (C+PCS). We assessed the association between the causes of concussion and recovery from C+PCS in a consecutive retrospective and prospective cohort of 600 patients referred to the Canadian Concussion Center (CCC) at Toronto Western Hospital. Data were obtained from clinical records and follow-up questionnaires and not from a standardized database. A novel method was used to assess long-term recovery, and multi-variable Cox proportional hazards models were used to assess relationships between cause of concussion and time to recovery. We examined the subsequent recovery of patients who had not recovered after at least one month from the time of concussion. Patients were grouped into the following four causes: sports and recreation (S&R, n = 312, 52%); motor vehicle collisions (MVC, n = 103, 17%); falls (n = 100, 17%); and being struck by an object including violence (SBOV, n = 85, 14%). The MVC group had the highest percentage of females (75.7%), the oldest participants (median: 40.0 [interquartile range (IQR):30.5-49.0] years), the most symptoms (median:11.0 [IQR:8.5-15.0]), and the longest symptom duration (median: 28.0 [IQR:12.0-56.00] months). In contrast, the S&R group had the highest percentage of males (58.1%), the youngest participants (median:20.0 [IQR:17.0-30.0] years), the best recovery outcome, and shortest symptom duration (median:22.0 [IQR:8.0-49.5] months). Significant differences among the four causes included age (p < 0.001), sex (p < 0.001), number of previous concussions (p < 0.001), history of psychiatric disorders (p = 0.002), and migraine (p = 0.001). Recovery from concussion was categorized into three groups: (1) Complete Recovery occurred in only 60 (10%) patients with median time 8.0 (IQR:3.5-18.0) months and included 42 S&R, 7 MVC, 8 falls, and 3 SBOV; (2) Incomplete Recovery occurred in 408 (68.0%) patients with persisting median symptom time of 5.0 (IQR:2.0-12.0) months; and (3) Unknown Recovery occurred in 132 (22.0%) patients and was because of lack of follow-up. In summary, the cause of C+PCS was associated with the type, number, and duration of symptoms and time required for recovery, although all causes of C+PCS produced prolonged symptoms in a large percentage of patients, which emphasizes the importance of concussions as a public health concern necessitating improved prevention and treatment strategies.
Collapse
Affiliation(s)
- Charles H. Tator
- Canadian Concussion Centre, Division of Neurosurgery, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Connor Moore
- Canadian Concussion Centre, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Chloé Buso
- Canadian Concussion Centre, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Ella Huszti
- Biostatistics Research Unit, University Health Network, Toronto, Ontario, Canada
| | - Qixuan Li
- Biostatistics Research Unit, University Health Network, Toronto, Ontario, Canada
| | - Emma B. Prentice
- Canadian Concussion Centre, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Mohzgan Khodadadi
- Canadian Concussion Centre, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Olivia Scott
- Canadian Concussion Centre, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Carmela M. Tartaglia
- Canadian Concussion Centre, Division of Neurology, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Hardaker N, King D, Hume PA, Stewart T, Sims S, Basu I, Shilton B, Selfe J. Female RNA concussion (FeRNAC) study: assessing hormone profiles and salivary RNA in females with concussion by emergency departments in New Zealand: a study protocol. BMC Neurol 2024; 24:149. [PMID: 38698312 PMCID: PMC11064333 DOI: 10.1186/s12883-024-03653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Females of reproductive age with concussion report a greater number of symptoms that can be more severe and continue for longer than age matched males. Underlying mechanisms for sex differences are not well understood. Short non-coding Ribonucleic Acids (sncRNAs) are candidate salivary biomarkers for concussion and have been studied primarily in male athletes. Female sex hormones influence expression of these biomarkers, and it remains unclear whether a similar pattern of sncRNA expression would be observed in females following concussion. This study aims to evaluate recovery time, the ratio of salivary sncRNAs and symptom severity across different hormone profiles in females presenting to emergency departments (ED) with concussion and, to investigate the presence of low energy availability (LEA) as a potential modifier of concussion symptoms. METHODS This prospective cohort study recruits participants from New Zealand EDs who are biologically female, of reproductive age (16-50 years) and with a confirmed diagnosis of concussion from an ED healthcare professional. Participants are excluded by ED healthcare professionals from study recruitment as part of initial routine assessment if they have a pre-diagnosed psychiatric condition, neurological condition (i.e., epilepsy, cerebral palsy) or more than three previously diagnosed concussions. Participants provide a saliva sample for measurement of sncRNA's, and online survey responses relating to hormone profile and symptom recovery at 7-day intervals after injury until they report a full return to work/study. The study is being performed in accordance with ethical standards of the Declaration of Helsinki with ethics approval obtained from the Health and Disability Ethics Committee (HDEC #2021 EXP 11655), Auckland University of Technology Ethics Committee (AUTEC #22/110) and locality consent through Wellington hospital research office. DISCUSSION If saliva samples confirm presence of sncRNAs in females with concussion, it will provide evidence of the potential of saliva sampling as an objective tool to aid in diagnosis of, and confirmation of recovery from, concussion. Findings will determine whether expression of sncRNAs is influenced by steroid hormones in females and may outline the need for sex specific application and interpretation of sncRNAs as a clinical and/or research tool. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR) registration number ACTRN12623001129673.
Collapse
Affiliation(s)
- Natalie Hardaker
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand.
- Accident Compensation Corporation, Wellington, New Zealand.
- Traumatic Brain Injury Network (TBIN), Auckland University of Technology, Auckland, New Zealand.
| | - Doug King
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand
- Traumatic Brain Injury Network (TBIN), Auckland University of Technology, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Sport and Exercise Sciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham, UK
| | - Patria A Hume
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand
- Traumatic Brain Injury Network (TBIN), Auckland University of Technology, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Technology and Policy Lab - Law School, The University of Western Australia, Perth, Australia
| | - Tom Stewart
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand
| | - Stacy Sims
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Stanford Lifestyle Medicine, Stanford University, Palo Alto, CA, USA
| | | | | | - James Selfe
- Department of Health Professions, Faculty of Health and Education, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
6
|
Kotewitsch M, Heimer M, Schmitz B, Mooren FC. Non-coding RNAs in exercise immunology: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:311-338. [PMID: 37925072 PMCID: PMC11116971 DOI: 10.1016/j.jshs.2023.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 11/06/2023]
Abstract
Regular physical exercise has been recognized as a potent modulator of immune function, with its effects including enhanced immune surveillance, reduced inflammation, and improved overall health. While strong evidence exists that physical exercise affects the specific expression and activity of non-coding RNAs (ncRNAs) also involved in immune system regulation, heterogeneity in individual study designs and analyzed exercise protocols exists, and a condensed list of functional, exercise-dependent ncRNAs with known targets in the immune system is missing from the literature. A systematic review and qualitative analysis was used to identify and categorize ncRNAs participating in immune modulation by physical exercise. Two combined approaches were used: (a) a systematic literature search for "ncRNA and exercise immunology", (b) and a database search for microRNAs (miRNAs) (miRTarBase and DIANA-Tarbase v8) aligned with known target genes in the immune system based on the Reactome database, combined with a systematic literature search for "ncRNA and exercise". Literature searches were based on PubMed, Web of Science, and SPORTDiscus; and miRNA databases were filtered for targets validated by in vitro experimental data. Studies were eligible if they reported on exercise-based interventions in healthy humans. After duplicate removal, 95 studies were included reporting on 164 miRNAs, which were used for the qualitative synthesis. Six studies reporting on long-noncoding RNAs (lncRNAs) or circular RNAs were also identified. Results were analyzed using ordering tables that included exercise modality (endurance/resistance exercise), acute or chronic interventions, as well as the consistency in reported change between studies. Evaluation criteria were defined as "validated" with 100% of ≥3 independent studies showing identical direction of regulation, "plausible" (≥80%), or "suggestive" (≥70%). For resistance exercise, upregulation of miR-206 was validated while downregulation of miR-133a appeared plausible. For endurance exercise, 15 miRNAs were categorized as validated, with 12 miRNAs being consistently elevated and 3 miRNAs being downregulated, most of them after acute exercise training. In conclusion, our approach provides evidence that miRNAs play a major role in exercise-induced effects on the innate and adaptive immune system by targeting different pathways affecting immune cell distribution, function, and trafficking as well as production of (anti-)inflammatory cytokines. miRNAs miR-15, miR-29c, miR-30a, miR-142/3, miR-181a, and miR-338 emerged as key players in mediating the immunomodulatory effects of exercise predominantly after acute bouts of endurance exercise.
Collapse
Affiliation(s)
- Mona Kotewitsch
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| | - Melina Heimer
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| | - Boris Schmitz
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany.
| | - Frank C Mooren
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| |
Collapse
|
7
|
Lember LM, Ntikas M, Mondello S, Wilson L, Di Virgilio TG, Hunter AM, Kobeissy F, Mechref Y, Donaldson DI, Ietswaart M. The Use of Biofluid Markers to Evaluate the Consequences of Sport-Related Subconcussive Head Impact Exposure: A Scoping Review. SPORTS MEDICINE - OPEN 2024; 10:12. [PMID: 38270708 PMCID: PMC10811313 DOI: 10.1186/s40798-023-00665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Amidst growing concern about the safety of sport-related repetitive subconcussive head impacts (RSHI), biofluid markers may provide sensitive, informative, and practical assessment of the effects of RSHI exposure. OBJECTIVE This scoping review aimed to systematically examine the extent, nature, and quality of available evidence from studies investigating the effects of RSHI on biofluid markers, to identify gaps and to formulate guidelines to inform future research. METHODS PRISMA extension for Scoping Reviews guidelines were adhered to. The protocol was pre-registered through publication. MEDLINE, Scopus, SPORTDiscus, CINAHL, PsycINFO, Cochrane Library, OpenGrey, and two clinical trial registries were searched (until March 30, 2022) using descriptors for subconcussive head impacts, biomarkers, and contact sports. Included studies were assessed for risk of bias and quality. RESULTS Seventy-nine research publications were included in the review. Forty-nine studies assessed the acute effects, 23 semi-acute and 26 long-term effects of RSHI exposure. The most studied sports were American football, boxing, and soccer, and the most investigated markers were (in descending order): S100 calcium-binding protein beta (S100B), tau, neurofilament light (NfL), glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), brain-derived neurotrophic factor (BDNF), phosphorylated tau (p-tau), ubiquitin C-terminal hydrolase L1 (UCH-L1), and hormones. High or moderate bias was found in most studies, and marker-specific conclusions were subject to heterogeneous and limited evidence. Although the evidence is weak, some biofluid markers-such as NfL-appeared to show promise. More markedly, S100B was found to be problematic when evaluating the effects of RSHI in sport. CONCLUSION Considering the limitations of the evidence base revealed by this first review dedicated to systematically scoping the evidence of biofluid marker levels following RSHI exposure, the field is evidently still in its infancy. As a result, any recommendation and application is premature. Although some markers show promise for the assessment of brain health following RSHI exposure, future large standardized and better-controlled studies are needed to determine biofluid markers' utility.
Collapse
Affiliation(s)
- Liivia-Mari Lember
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Michail Ntikas
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- The School of Psychology, University of Aberdeen, Aberdeen, UK
| | - Stefania Mondello
- Biomedical and Dental Sciences and Morphofunctional Imaging, Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Lindsay Wilson
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Thomas G Di Virgilio
- Physiology Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Angus M Hunter
- Physiology Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
- Department of Sports Science, Nottingham Trent University, Nottingham, UK
| | - Firas Kobeissy
- Center for Neurotrauma, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine (MSM), Multiomics & Biomarkers, Atlanta, GA, 30310, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - David I Donaldson
- School of Psychology and Neuroscience, University of St Andrews, St. Andrews, UK
| | - Magdalena Ietswaart
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK.
| |
Collapse
|
8
|
Gharahi H, Garimella HT, Chen ZJ, Gupta RK, Przekwas A. Mathematical model of mechanobiology of acute and repeated synaptic injury and systemic biomarker kinetics. Front Cell Neurosci 2023; 17:1007062. [PMID: 36814869 PMCID: PMC9939777 DOI: 10.3389/fncel.2023.1007062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
Background Blast induced Traumatic Brain Injury (bTBI) has become a signature casualty of military operations. Recently, military medics observed neurocognitive deficits in servicemen exposed to repeated low level blast (LLB) waves during military heavy weapons training. In spite of significant clinical and preclinical TBI research, current understanding of injury mechanisms and short- and long-term outcomes is limited. Mathematical models of bTBI biomechanics and mechanobiology of sensitive neuro-structures such as synapses may help in better understanding of injury mechanisms and in the development of improved diagnostics and neuroprotective strategies. Methods and results In this work, we formulated a model of a single synaptic structure integrating the dynamics of the synaptic cell adhesion molecules (CAMs) with the deformation mechanics of the synaptic cleft. The model can resolve time scales ranging from milliseconds during the hyperacute phase of mechanical loading to minutes-hours acute/chronic phase of injury progression/repair. The model was used to simulate the synaptic injury responses caused by repeated blast loads. Conclusion Our simulations demonstrated the importance of the number of exposures compared to the duration of recovery period between repeated loads on the synaptic injury responses. The paper recognizes current limitations of the model and identifies potential improvements.
Collapse
Affiliation(s)
- Hamidreza Gharahi
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States,Hamidreza Gharahi,
| | - Harsha T. Garimella
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States
| | - Zhijian J. Chen
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States
| | - Raj K. Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| | - Andrzej Przekwas
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States,*Correspondence: Andrzej Przekwas,
| |
Collapse
|
9
|
Epigenetic Alterations in Sports-Related Injuries. Genes (Basel) 2022; 13:genes13081471. [PMID: 36011382 PMCID: PMC9408207 DOI: 10.3390/genes13081471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is a well-known fact that physical activity benefits people of all age groups. However, highly intensive training, maladaptation, improper equipment, and lack of sufficient rest lead to contusions and sports-related injuries. From the perspectives of sports professionals and those performing regular–amateur sports activities, it is important to maintain proper levels of training, without encountering frequent injuries. The bodily responses to physical stress and intensive physical activity are detected on many levels. Epigenetic modifications, including DNA methylation, histone protein methylation, acetylation, and miRNA expression occur in response to environmental changes and play fundamental roles in the regulation of cellular activities. In the current review, we summarise the available knowledge on epigenetic alterations present in tissues and organs (e.g., muscles, the brain, tendons, and bones) as a consequence of sports-related injuries. Epigenetic mechanism observations have the potential to become useful tools in sports medicine, as predictors of approaching pathophysiological alterations and injury biomarkers that have already taken place.
Collapse
|